Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select all of the equations below that are equivalent to:\newline2=16+m2 = -16 + m\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 24=(16+m)1224 = (-16 + m) \cdot 12\newline(B) 40=20(16+m)40 = 20(-16 + m)\newline(C) 52=80+5m-5 \cdot 2 = 80 + -5m\newline(D) 44=22(16+m)44 = 22(-16 + m)

Full solution

Q. Select all of the equations below that are equivalent to:\newline2=16+m2 = -16 + m\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 24=(16+m)1224 = (-16 + m) \cdot 12\newline(B) 40=20(16+m)40 = 20(-16 + m)\newline(C) 52=80+5m-5 \cdot 2 = 80 + -5m\newline(D) 44=22(16+m)44 = 22(-16 + m)
  1. Simplify Equation: To determine if an equation is equivalent to 2=16+m2 = -16 + m, we can simplify or manipulate the given choices to see if they reduce to the original equation.
  2. Check Choice (A): For choice (A) 24=(16+m)1224 = (–16 + m) \cdot 12, we can divide both sides by 1212 to see if it simplifies to the original equation.\newline2412=(16+m)1212\frac{24}{12} = \frac{(–16 + m) \cdot 12}{12}\newline2=16+m2 = –16 + m\newlineThis is the same as the original equation.
  3. Check Choice (B): For choice (B) 40=20(16+m)40 = 20(–16 + m), we can divide both sides by 2020 to see if it simplifies to the original equation.\newline4020=20(16+m)20\frac{40}{20} = \frac{20(–16 + m)}{20}\newline2=16+m2 = –16 + m\newlineThis is the same as the original equation.
  4. Check Choice (C): For choice (C) 52=80+5m-5 \cdot 2 = 80 + -5m, we can simplify the left side and then divide both sides by 5-5 to see if it simplifies to the original equation.\newline52=10-5 \cdot 2 = -10\newline10=80+5m-10 = 80 + -5m\newlineNow, divide both sides by 5-5:\newline10/5=(80+5m)/5-10 / -5 = (80 + -5m) / -5\newline2=16+m2 = -16 + m\newlineThis is the same as the original equation.
  5. Check Choice (D): For choice (D) 44=22(16+m)44 = 22(–16 + m), we can divide both sides by 2222 to see if it simplifies to the original equation.\newline4422=22(16+m)22\frac{44}{22} = \frac{22(–16 + m)}{22}\newline2=16+m2 = –16 + m\newlineThis is the same as the original equation.

More problems from Identify equivalent equations