Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[-x-5y+z=17],[-5x-5y+5z=5],[2x+5y-3z=-10]:}

x5y+z=175x5y+5z=52x+5y3z=10 \begin{array}{l} -x-5 y+z=17 \\ -5 x-5 y+5 z=5 \\ 2 x+5 y-3 z=-10 \end{array}

Full solution

Q. x5y+z=175x5y+5z=52x+5y3z=10 \begin{array}{l} -x-5 y+z=17 \\ -5 x-5 y+5 z=5 \\ 2 x+5 y-3 z=-10 \end{array}
  1. Elimination Method: First, let's solve the system of equations using the elimination method.\newlineWe have the system:\newline11) x5y+z=17-x - 5y + z = 17\newline22) 5x5y+5z=5-5x - 5y + 5z = 5\newline33) 2x+5y3z=102x + 5y - 3z = -10\newlineLet's start by eliminating yy from equations 11 and 33 by adding them together.
  2. Equation 44: Adding equation 11 and equation 33:\newline(x5y+z)+(2x+5y3z)=17+(10)(-x - 5y + z) + (2x + 5y - 3z) = 17 + (-10)\newlineThis simplifies to:\newlinex+2x5y+5y+z3z=7-x + 2x - 5y + 5y + z - 3z = 7\newlineWhich further simplifies to:\newlinex2z=7x - 2z = 7\newlineLet's call this equation 44.
  3. Equation 55: Now, let's eliminate yy from equations 22 and 33 by multiplying equation 33 by 1-1 and adding it to equation 22.\newlineMultiplying equation 33 by 1-1 gives us:\newline2x5y+3z=10-2x - 5y + 3z = 10\newlineLet's call this equation 55.
  4. Equation 66: Adding equation 22 and equation 55:\newline(5x5y+5z)+(2x5y+3z)=5+10(-5x - 5y + 5z) + (-2x - 5y + 3z) = 5 + 10\newlineThis simplifies to:\newline5x2x5y5y+5z+3z=15-5x - 2x - 5y - 5y + 5z + 3z = 15\newlineWhich further simplifies to:\newline7x+8z=15-7x + 8z = 15\newlineLet's call this equation 66.
  5. Equation 77: Now we have two equations with two variables (equations 44 and 66):\newline44) x2z=7x - 2z = 7\newline66) 7x+8z=15-7x + 8z = 15\newlineLet's multiply equation 44 by 77 to help eliminate xx:\newline7(x2z)=7(7)7(x - 2z) = 7(7)\newline7x14z=497x - 14z = 49\newlineLet's call this equation 77.
  6. Value of z: Adding equation 66 and equation 77:\newline(7x+8z)+(7x14z)=15+49(-7x + 8z) + (7x - 14z) = 15 + 49\newlineThis simplifies to:\newline7x+7x+8z14z=64-7x + 7x + 8z - 14z = 64\newlineWhich further simplifies to:\newline6z=64-6z = 64\newlineDividing both sides by 6-6 gives us:\newlinez=646z = -\frac{64}{6}\newlinez=323z = -\frac{32}{3}
  7. Substitute for x: Now that we have the value of z, we can substitute it back into equation 44 to find x:\newlinex2(323)=7x - 2(-\frac{32}{3}) = 7\newlinex+643=7x + \frac{64}{3} = 7\newlineTo solve for x, we need to subtract 643\frac{64}{3} from both sides:\newlinex=7643x = 7 - \frac{64}{3}\newlinex=(21643)x = (\frac{21 - 64}{3})\newlinex=433x = -\frac{43}{3}
  8. Find yy using Equation 11: Now we have the values for xx and zz. We can substitute these into any of the original equations to find yy. Let's use equation 11:\newlinex5y+z=17-x - 5y + z = 17\newline(43/3)5y+(32/3)=17-(-43/3) - 5y + (-32/3) = 17\newline43/35y32/3=1743/3 - 5y - 32/3 = 17\newlineCombining like terms gives us:\newline11/35y=1711/3 - 5y = 17\newlineTo solve for yy, we need to subtract 11/311/3 from both sides and then divide by xx00:\newlinexx11\newlinexx22\newlinexx33\newlinexx44\newlinexx55\newlinexx66
  9. Substitution Method: Now let's solve the system using the substitution method.\newlineWe will start by expressing xx from equation 11 in terms of yy and zz:\newlinex5y+z=17-x - 5y + z = 17\newlinex=5y+z17x = -5y + z - 17\newlineLet's call this equation 88.
  10. Incorrect Substitution: Next, we substitute equation 88 into equation 22:\newline5(5y+z17)5y+5z=5-5(-5y + z - 17) - 5y + 5z = 5\newlineThis simplifies to:\newline25y5z+855y+5z=525y - 5z + 85 - 5y + 5z = 5\newlineWhich further simplifies to:\newline20y+85=520y + 85 = 5\newlineSubtracting 8585 from both sides gives us:\newline20y=8020y = -80\newlineDividing both sides by 2020 gives us:\newliney=4y = -4\newlineHowever, this is a math error because we did not substitute correctly. We should have substituted for xx in all terms of equation 22, not just the first term.