Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
y^(n).

(y^((5)/(4)))/(y^((1)/(4)))=

Rewrite the expression in the form yn y^{n} .\newliney54y14= \frac{y^{\frac{5}{4}}}{y^{\frac{1}{4}}}=

Full solution

Q. Rewrite the expression in the form yn y^{n} .\newliney54y14= \frac{y^{\frac{5}{4}}}{y^{\frac{1}{4}}}=
  1. Apply quotient rule for exponents: Apply the quotient rule for exponents which states that when dividing like bases, you subtract the exponents.\newlineSo, (y54)/(y14)=y(5414)(y^{\frac{5}{4}})/(y^{\frac{1}{4}}) = y^{(\frac{5}{4} - \frac{1}{4})}
  2. Subtract exponents to simplify: Subtract the exponents (54)(14)(\frac{5}{4}) - (\frac{1}{4}) to simplify the expression.\newliney(5414)=y44y^{(\frac{5}{4} - \frac{1}{4})} = y^{\frac{4}{4}}
  3. Simplify exponent: Simplify the exponent 44\frac{4}{4} which is equal to 11. \newliney44=y1y^{\frac{4}{4}} = y^1
  4. Recognize power of 11: Recognize that any number to the power of 11 is the number itself. y1=yy^1 = y

More problems from Evaluate exponential functions