Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
b^(n).

b^(4)*b^(-(1)/(4))=

Rewrite the expression in the form bn b^{n} .\newlineb4b14= b^{4} \cdot b^{-\frac{1}{4}}=

Full solution

Q. Rewrite the expression in the form bn b^{n} .\newlineb4b14= b^{4} \cdot b^{-\frac{1}{4}}=
  1. Using exponent property: To simplify the expression b4b14b^{4}\cdot b^{-\frac{1}{4}}, we use the property of exponents that states when we multiply two powers with the same base, we add their exponents.\newlineSo, b4b14=b4+(14)b^{4}\cdot b^{-\frac{1}{4}} = b^{4 + \left(-\frac{1}{4}\right)}.
  2. Performing addition of exponents: Now we perform the addition of the exponents: 4+((1)/(4))=41/4=16/41/4=15/44 + (-(1)/(4)) = 4 - 1/4 = 16/4 - 1/4 = 15/4. So, b4b(1)/(4)=b15/4b^{4}*b^{-(1)/(4)} = b^{15/4}.

More problems from Evaluate exponential functions