Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
b^(n).

(b^(2))^((3)/(7))=◻

Rewrite the expression in the form bn b^{n} .\newline(b2)37= \left(b^{2}\right)^{\frac{3}{7}}=\square

Full solution

Q. Rewrite the expression in the form bn b^{n} .\newline(b2)37= \left(b^{2}\right)^{\frac{3}{7}}=\square
  1. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to the given expression (b2)(3)/(7)(b^{2})^{(3)/(7)}.
  2. Multiply exponents: Multiply the exponents.\newlineUsing the power of a power rule, we multiply the exponents 22 and 37\frac{3}{7} together.\newlineb2×(37)=b67b^{2\times\left(\frac{3}{7}\right)} = b^{\frac{6}{7}}
  3. Simplify expression: Simplify the expression.\newlineThe expression b67b^{\frac{6}{7}} is already in the simplest form, so no further simplification is needed.

More problems from Evaluate exponential functions