Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
a^(n).

(a^(5))/(a^((5)/(2)))=◻

Rewrite the expression in the form an a^{n} .\newlinea5a52=+x \frac{a^{5}}{a^{\frac{5}{2}}}=\square^{-+x}

Full solution

Q. Rewrite the expression in the form an a^{n} .\newlinea5a52=+x \frac{a^{5}}{a^{\frac{5}{2}}}=\square^{-+x}
  1. Apply Exponent Properties: To simplify the expression (a5)/(a(5/2))(a^{5})/(a^{(5/2)}), we use the properties of exponents which state that when dividing like bases, we subtract the exponents.\newlineSo, (a5)/(a(5/2))=a5(5/2)(a^{5})/(a^{(5/2)}) = a^{5 - (5/2)}.
  2. Perform Subtraction in Exponent: Now we need to perform the subtraction in the exponent: 5(52)5 - \left(\frac{5}{2}\right). To subtract these, we need a common denominator. The common denominator for 11 and 22 is 22, so we convert 55 to 102\frac{10}{2}. 5(52)=(102)(52)5 - \left(\frac{5}{2}\right) = \left(\frac{10}{2}\right) - \left(\frac{5}{2}\right).
  3. Find Common Denominator: Perform the subtraction of the fractions: (102)(52)=1052=52(\frac{10}{2}) - (\frac{5}{2}) = \frac{10 - 5}{2} = \frac{5}{2}.\newlineSo, a5(52)=a52a^{5 - (\frac{5}{2})} = a^{\frac{5}{2}}.

More problems from Evaluate exponential functions