Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-(x-5)^(2)+6
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=(x5)2+6 y=-(x-5)^{2}+6 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=(x5)2+6 y=-(x-5)^{2}+6 \newlineAnswer: y= y=
  1. Question Prompt: Question prompt: What is the standard form of the quadratic function y=(x5)2+6y = -(x - 5)^2 + 6?
  2. Expand and Simplify: Expand the squared term in the quadratic function.\newlineTo expand (x5)2(x - 5)^2, we use the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, where a=xa = x and b=5b = 5.\newline(x5)2=x22×x×5+52(x - 5)^2 = x^2 - 2 \times x \times 5 + 5^2\newline=x210x+25= x^2 - 10x + 25
  3. Multiply by 1-1: Multiply the expanded term by 1-1, as indicated by the negative sign in front of the parentheses.\newline1×(x210x+25)=x2+10x25-1 \times (x^2 - 10x + 25) = -x^2 + 10x - 25
  4. Add Constant Term: Add the constant term 66 to the result from Step 22 to complete the quadratic function in standard form.\newliney=x2+10x25+6y = -x^2 + 10x - 25 + 6
  5. Combine Like Terms: Combine like terms to simplify the quadratic function.\newliney=x2+10x19y = -x^2 + 10x - 19

More problems from Quadratic equation with complex roots