Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-(x+2)^(2)+1
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=(x+2)2+1 y=-(x+2)^{2}+1 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=(x+2)2+1 y=-(x+2)^{2}+1 \newlineAnswer: y= y=
  1. Expand Squared Term: Expand the squared term in the equation y=(x+2)2+1y=-(x+2)^2+1. To expand (x+2)2(x+2)^2, we use the formula (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2. Here, a=xa=x and b=2b=2, so (x+2)2=x2+2×x×2+22(x+2)^2 = x^2 + 2\times x\times 2 + 2^2.
  2. Calculate Expanded Form: Calculate the expanded form of (x+2)2(x+2)^2.(x+2)2=x2+4x+4(x+2)^2 = x^2 + 4x + 4
  3. Substitute into Equation: Substitute the expanded form of (x+2)2(x+2)^2 into the original equation.\newliney=(x2+4x+4)+1y = - (x^2 + 4x + 4) + 1
  4. Distribute Negative Sign: Distribute the negative sign to each term inside the parentheses.\newliney=x24x4+1y = -x^2 - 4x - 4 + 1
  5. Combine Constant Terms: Combine the constant terms 4-4 and +1+1.y=x24x3y = -x^2 - 4x - 3

More problems from Quadratic equation with complex roots