Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-8(x+4)(x+1)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=8(x+4)(x+1) y=-8(x+4)(x+1) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=8(x+4)(x+1) y=-8(x+4)(x+1) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (also known as FOIL - First, Outer, Inner, Last). We have y=8(x+4)(x+1)y = -8(x + 4)(x + 1). First, we'll multiply the terms inside the parentheses. y=8[(x)(x)+(x)(1)+(4)(x)+(4)(1)]y = -8[(x)(x) + (x)(1) + (4)(x) + (4)(1)]
  2. Combine Like Terms: Continue the expansion by combining like terms.\newliney=8(x2+x+4x+4)y = -8(x^2 + x + 4x + 4)\newliney=8(x2+5x+4)y = -8(x^2 + 5x + 4)
  3. Distribute 8-8: Distribute the 8-8 across each term inside the parentheses.\newliney=8(x2)8(5x)8(4)y = -8(x^2) - 8(5x) - 8(4)\newliney=8x240x32y = -8x^2 - 40x - 32
  4. Standard Form Expression: Write the final expression in Standard Form, which is Ax2+Bx+CAx^2 + Bx + C.\newliney=8x240x32y = -8x^2 - 40x - 32\newlineThis is the Standard Form of the quadratic function.

More problems from Multiply two binomials