Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-7(x+1)^(2)+6
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=7(x+1)2+6 y=-7(x+1)^{2}+6 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=7(x+1)2+6 y=-7(x+1)^{2}+6 \newlineAnswer: y= y=
  1. Expand and Distribute: To rewrite the quadratic function in Standard Form, we need to expand the squared term and distribute the 7-7 across the terms inside the parentheses.\newliney=7(x+1)2+6y = -7(x + 1)^2 + 6\newliney=7(x2+2x+1)+6y = -7(x^2 + 2x + 1) + 6
  2. Distribute 7-7: Now, distribute the 7-7 to each term inside the parentheses.\newliney=7×x27×2x7×1+6y = -7 \times x^2 - 7 \times 2x - 7 \times 1 + 6\newliney=7x214x7+6y = -7x^2 - 14x - 7 + 6
  3. Combine Constant Terms: Combine the constant terms to simplify the equation.\newliney=7x214x1y = -7x^2 - 14x - 1
  4. Quadratic Function in Standard Form: The quadratic function is now in Standard Form, which is y=ax2+bx+cy = ax^2 + bx + c.

More problems from Quadratic equation with complex roots