Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-7(x+9)(x-1)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=7(x+9)(x1) y=-7(x+9)(x-1) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=7(x+9)(x1) y=-7(x+9)(x-1) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (also known as FOIL - First, Outer, Inner, Last).\newlineWe need to multiply each term in the first binomial by each term in the second binomial.\newliney=7(x+9)(x1)y = -7(x + 9)(x - 1)\newliney=7[(x×x)+(x×1)+(9×x)+(9×1)]y = -7[(x \times x) + (x \times -1) + (9 \times x) + (9 \times -1)]
  2. Perform Multiplication: Perform the multiplication for each pair of terms.\newliney=7[(x2)x+9x9]y = -7[(x^2) - x + 9x - 9]
  3. Combine Like Terms: Combine like terms inside the brackets.\newliney = 7[x2+(9xx)9]-7[x^2 + (9x - x) - 9]\newliney = 7[x2+8x9]-7[x^2 + 8x - 9]
  4. Distribute Coefficients: Distribute the 7-7 across each term inside the brackets.\newliney=7(x2)7(8x)7(9)y = -7(x^2) -7(8x) -7(-9)\newliney=7x256x+63y = -7x^2 - 56x + 63
  5. Write in Standard Form: Write the final expression in standard form, which is ax2+bx+cax^2 + bx + c.\newliney=7x256x+63y = -7x^2 - 56x + 63\newlineThis is the standard form of the quadratic function.

More problems from Multiply two binomials