Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-6(x+2)(x-7)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=6(x+2)(x7) y=-6(x+2)(x-7) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=6(x+2)(x7) y=-6(x+2)(x-7) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (also known as the FOIL method for binomials).\newliney=6(x+2)(x7)y = -6(x + 2)(x - 7)\newlineFirst, distribute the 6-6 to the binomials (x+2)(x + 2) and (x7)(x - 7).\newliney=6[(x)(x)+(x)(7)+(2)(x)+(2)(7)]y = -6[(x)(x) + (x)(-7) + (2)(x) + (2)(-7)]
  2. Simplify Expression: Simplify the expression by multiplying the terms inside the brackets.\newliney=6[x27x+2x14]y = -6[x^2 - 7x + 2x - 14]\newlineCombine like terms inside the brackets.\newliney=6[x25x14]y = -6[x^2 - 5x - 14]
  3. Distribute 6-6: Distribute the 6-6 across each term inside the brackets.\newliney=6(x2)+6(5x)+6(14)y = -6(x^2) + 6(5x) + 6(14)\newliney=6x2+30x+84y = -6x^2 + 30x + 84
  4. Write in Standard Form: Write the final expression in Standard Form, which is y=ax2+bx+cy = ax^2 + bx + c.\newliney=6x2+30x+84y = -6x^2 + 30x + 84\newlineThis is the quadratic function in Standard Form.

More problems from Multiply two binomials