Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Re-write the quadratic function below in Standard Form
\newline
y
=
−
6
(
x
+
1
)
(
x
−
6
)
y=-6(x+1)(x-6)
y
=
−
6
(
x
+
1
)
(
x
−
6
)
\newline
Answer:
y
=
y=
y
=
View step-by-step help
Home
Math Problems
Algebra 1
Multiply two binomials
Full solution
Q.
Re-write the quadratic function below in Standard Form
\newline
y
=
−
6
(
x
+
1
)
(
x
−
6
)
y=-6(x+1)(x-6)
y
=
−
6
(
x
+
1
)
(
x
−
6
)
\newline
Answer:
y
=
y=
y
=
Multiply First Terms:
We will multiply the first terms of each binomial together:
x
×
x
=
x
2
x \times x = x^2
x
×
x
=
x
2
.
Multiply Outer Terms:
Next, we will multiply the outer terms:
x
×
(
−
6
)
=
−
6
x
x \times (-6) = -6x
x
×
(
−
6
)
=
−
6
x
.
Multiply Inner Terms:
Then, we will multiply the inner terms:
1
×
x
=
x
1 \times x = x
1
×
x
=
x
.
Multiply Last Terms:
Finally, we will multiply the last terms of each binomial together:
1
×
(
−
6
)
=
−
6
1 \times (-6) = -6
1
×
(
−
6
)
=
−
6
.
Combine Products:
Now, we combine the products to get the expanded form:
x
2
−
6
x
+
x
−
6
x^2 - 6x + x - 6
x
2
−
6
x
+
x
−
6
.
Combine Like Terms:
We then combine like terms:
x
2
−
6
x
+
x
−
6
=
x
2
−
5
x
−
6
x^2 - 6x + x - 6 = x^2 - 5x - 6
x
2
−
6
x
+
x
−
6
=
x
2
−
5
x
−
6
.
Multiply Entire Expression:
Now, we need to multiply the entire expression by
−
6
-6
−
6
to get the standard form of the quadratic function:
y
=
−
6
(
x
2
−
5
x
−
6
)
y = -6(x^2 - 5x - 6)
y
=
−
6
(
x
2
−
5
x
−
6
)
.
Distribute
−
6
-6
−
6
:
Distribute
−
6
-6
−
6
to each term inside the parentheses:
y
=
−
6
×
x
2
+
6
×
5
x
+
6
×
6
y = -6 \times x^2 + 6 \times 5x + 6 \times 6
y
=
−
6
×
x
2
+
6
×
5
x
+
6
×
6
.
Simplify Expression:
Simplify the expression:
y
=
−
6
x
2
+
30
x
+
36
y = -6x^2 + 30x + 36
y
=
−
6
x
2
+
30
x
+
36
. This is the quadratic function in standard form.
More problems from Multiply two binomials
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 10 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 10 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 10 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 10 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 10 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 10 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 1 year ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant