Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=5(x-2)(x-1)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=5(x2)(x1) y=5(x-2)(x-1) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=5(x2)(x1) y=5(x-2)(x-1) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (also known as the FOIL method for binomials).\newlineWe have y=5(x2)(x1)y = 5(x - 2)(x - 1). First, we'll multiply the terms inside the parentheses.\newline(x2)(x1)=x(x1)2(x1)(x - 2)(x - 1) = x(x - 1) - 2(x - 1)\newline=x2x2x+2= x^2 - x - 2x + 2\newline=x23x+2= x^2 - 3x + 2
  2. Multiply Expanded Binomial: Multiply the expanded binomial by the coefficient 55. Now we multiply each term of the binomial by 55 to get the quadratic function in standard form. y=5(x23x+2)=5x215x+10y = 5(x^2 - 3x + 2) = 5x^2 - 15x + 10
  3. Final Standard Form: Write the final answer in Standard Form.\newlineThe Standard Form of a quadratic function is y=ax2+bx+cy = ax^2 + bx + c. Our function is now in this form, with a=5a = 5, b=15b = -15, and c=10c = 10.\newliney=5x215x+10y = 5x^2 - 15x + 10

More problems from Multiply two binomials