Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-5(x+3)^(2)-8
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=5(x+3)28 y=-5(x+3)^{2}-8 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=5(x+3)28 y=-5(x+3)^{2}-8 \newlineAnswer: y= y=
  1. Expand and Distribute: To rewrite the quadratic function in standard form, we need to expand the squared term and distribute the coefficient 5-5.\newliney=5(x+3)28y = -5(x + 3)^2 - 8\newliney=5(x2+6x+9)8y = -5(x^2 + 6x + 9) - 8
  2. Distribute 5-5: Now, distribute the 5-5 to each term inside the parentheses.\newliney=5x230x458y = -5x^2 - 30x - 45 - 8
  3. Combine Constant Terms: Combine the constant terms to simplify the expression.\newliney=5x230x53y = -5x^2 - 30x - 53
  4. Quadratic Function in Standard Form: The quadratic function is now in standard form, which is y=ax2+bx+cy = ax^2 + bx + c.

More problems from Quadratic equation with complex roots