Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=4(x-2)(x+6)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=4(x2)(x+6) y=4(x-2)(x+6) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=4(x2)(x+6) y=4(x-2)(x+6) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (FOIL method). We need to multiply the two binomials (x2)(x-2) and (x+6)(x+6) together and then multiply the result by 44.
  2. Multiply Binomials: Multiply the terms in the binomials.\newline(x2)(x+6)=x×x+x×62×x2×6(x-2)(x+6) = x\times x + x\times 6 - 2\times x - 2\times 6\newline=x2+6x2x12= x^2 + 6x - 2x - 12\newline=x2+4x12= x^2 + 4x - 12
  3. Multiply by 44: Multiply the result by 44.\newliney=4(x2+4x12)y = 4(x^2 + 4x - 12)\newliney=4x2+44x412y = 4\cdot x^2 + 4\cdot 4x - 4\cdot 12\newliney=4x2+16x48y = 4x^2 + 16x - 48

More problems from Multiply two binomials