Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-4(x+8)(x-2)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=4(x+8)(x2) y=-4(x+8)(x-2) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=4(x+8)(x2) y=-4(x+8)(x-2) \newlineAnswer: y= y=
  1. Expand Quadratic Function: Expand the quadratic function using the distributive property (also known as the FOIL method for binomials).\newlineWe need to multiply each term in the first binomial by each term in the second binomial.\newliney=4(x+8)(x2)y = -4(x + 8)(x - 2)\newliney=4[(x)(x)+(x)(2)+(8)(x)+(8)(2)]y = -4[(x)(x) + (x)(-2) + (8)(x) + (8)(-2)]
  2. Perform Multiplication: Perform the multiplication for each pair of terms.\newliney = 4[x22x+8x16]-4[x^2 - 2x + 8x - 16]\newlineCombine like terms inside the brackets.\newliney = 4[x2+6x16]-4[x^2 + 6x - 16]
  3. Combine Like Terms: Distribute the 4-4 across each term inside the brackets.\newliney=4(x2)4(6x)4(16)y = -4(x^2) - 4(6x) - 4(-16)\newliney=4x224x+64y = -4x^2 - 24x + 64
  4. Distribute 4-4: Write the quadratic function in standard form.\newlineThe standard form of a quadratic function is y=ax2+bx+cy = ax^2 + bx + c.\newlineTherefore, the standard form of the given quadratic function is:\newliney=4x224x+64y = -4x^2 - 24x + 64

More problems from Multiply two binomials