Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-3(x-2)^(2)-8
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=3(x2)28 y=-3(x-2)^{2}-8 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=3(x2)28 y=-3(x-2)^{2}-8 \newlineAnswer: y= y=
  1. Apply Distributive Property: Now, we multiply the expanded form by 3-3 to apply the distributive property.\newliney = 3(x24x+4)8-3(x^2 - 4x + 4) - 8\newliney = 3x2+12x128-3x^2 + 12x - 12 - 8
  2. Combine Constant Terms: Next, we combine the constant terms 12-12 and 8-8 to simplify the expression further.y=3x2+12x20y = -3x^2 + 12x - 20
  3. Quadratic Function in Standard Form: The quadratic function is now in Standard Form, which is y=ax2+bx+cy = ax^2 + bx + c.

More problems from Quadratic equation with complex roots