Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-2(x-5)^(2)+6
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=2(x5)2+6 y=-2(x-5)^{2}+6 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=2(x5)2+6 y=-2(x-5)^{2}+6 \newlineAnswer: y= y=
  1. Expand and Distribute: To rewrite the quadratic function in Standard Form, we need to expand the squared term and distribute the 2-2 across the terms inside the parentheses.\newliney=2(x5)2+6y = -2(x - 5)^2 + 6\newliney=2(x210x+25)+6y = -2(x^2 - 10x + 25) + 6
  2. Distribute 2-2: Now, distribute the 2-2 to each term inside the parentheses.\newliney=2×x2+2×10x2×25+6y = -2 \times x^2 + 2 \times 10x - 2 \times 25 + 6\newliney=2x2+20x50+6y = -2x^2 + 20x - 50 + 6
  3. Combine Constant Terms: Combine the constant terms to simplify the equation.\newliney=2x2+20x44y = -2x^2 + 20x - 44
  4. Quadratic Function in Standard Form: The quadratic function is now in Standard Form, which is y=ax2+bx+cy = ax^2 + bx + c.

More problems from Quadratic equation with complex roots