Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-2(x+9)(x-4)
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=2(x+9)(x4) y=-2(x+9)(x-4) \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=2(x+9)(x4) y=-2(x+9)(x-4) \newlineAnswer: y= y=
  1. Distribute 2-2 to product: We distribute 2-2 to the product of (x+9)(x + 9) and (x4)(x - 4).
    y=2[(x+9)(x4)]y = -2[(x + 9)(x - 4)]
    y=2[x(x4)+9(x4)]y = -2[x(x - 4) + 9(x - 4)]
    Now we will distribute xx to (x4)(x - 4) and 99 to (x4)(x - 4).
  2. Distribute xx and 99: Distribute xx to (x4)(x - 4).
    x(x4)=x24xx(x - 4) = x^2 - 4x
    Now distribute 99 to (x4)(x - 4).
    9(x4)=9x369(x - 4) = 9x - 36
    Combine the two results.
  3. Combine distributed terms: Combine the distributed terms.\newliney=2(x24x+9x36)y = -2(x^2 - 4x + 9x - 36)\newlineNow we will combine like terms within the parentheses.
  4. Combine like terms: Combine like terms.\newliney=2(x2+5x36)y = -2(x^2 + 5x - 36)\newlineNow we distribute 2-2 to each term inside the parentheses.
  5. Distribute 2-2 to each term: Distribute 2-2 to each term.\newliney=2(x2)2(5x)2(36)y = -2(x^2) - 2(5x) - 2(-36)\newliney=2x210x+72y = -2x^2 - 10x + 72\newlineThis is the quadratic function in Standard Form.

More problems from Multiply two binomials