Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=-2(x+4)^(2)+4
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=2(x+4)2+4 y=-2(x+4)^{2}+4 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=2(x+4)2+4 y=-2(x+4)^{2}+4 \newlineAnswer: y= y=
  1. Expand and Distribute: To rewrite the quadratic function in Standard Form, we need to expand the squared term and distribute the 2-2 across the terms inside the parentheses.\newliney=2(x+4)2+4y = -2(x + 4)^2 + 4\newliney=2(x2+8x+16)+4y = -2(x^2 + 8x + 16) + 4
  2. Distribute 2-2: Now, distribute the 2-2 to each term inside the parentheses.\newliney=2×x22×8x2×16+4y = -2 \times x^2 - 2 \times 8x - 2 \times 16 + 4\newliney=2x216x32+4y = -2x^2 - 16x - 32 + 4
  3. Combine Constant Terms: Combine the constant terms to simplify the equation.\newliney=2x216x28y = -2x^2 - 16x - 28
  4. Final Standard Form: The quadratic function is now in Standard Form, which is y=ax2+bx+cy = ax^2 + bx + c.

More problems from Quadratic equation with complex roots