Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following set of data, find the sample standard deviation, to the nearest thousandth.
59,68,40,56,36,70,20

For the following set of data, find the sample standard deviation, to the nearest thousandth.\newline59,68,40,56,36,70,2059,68,40,56,36,70,20

Full solution

Q. For the following set of data, find the sample standard deviation, to the nearest thousandth.\newline59,68,40,56,36,70,2059,68,40,56,36,70,20
  1. List data set and calculate mean: List the data set and calculate the mean (average).\newlineData set: 59,68,40,56,36,70,2059, 68, 40, 56, 36, 70, 20\newlineMean (μ)=59+68+40+56+36+70+207(\mu) = \frac{59 + 68 + 40 + 56 + 36 + 70 + 20}{7}\newlineMean (μ)=3497(\mu) = \frac{349}{7}\newlineMean (μ)=49.857(\mu) = 49.857
  2. Find squared differences: Subtract the mean from each data point and square the result to find the squared differences.\newlineSquared differences:\newline(5949.857)2=83.796(59 - 49.857)^2 = 83.796\newline(6849.857)2=329.796(68 - 49.857)^2 = 329.796\newline(4049.857)2=97.796(40 - 49.857)^2 = 97.796\newline(5649.857)2=37.796(56 - 49.857)^2 = 37.796\newline(3649.857)2=193.796(36 - 49.857)^2 = 193.796\newline(7049.857)2=406.796(70 - 49.857)^2 = 406.796\newline(2049.857)2=889.796(20 - 49.857)^2 = 889.796
  3. Sum squared differences: Sum the squared differences.\newlineSum of squared differences = 83.796+329.796+97.796+37.796+193.796+406.796+889.79683.796 + 329.796 + 97.796 + 37.796 + 193.796 + 406.796 + 889.796\newlineSum of squared differences = 2039.5722039.572
  4. Calculate variance: Divide the sum of squared differences by the sample size minus one to find the variance.\newlineSample size nn = 77\newlineVariance s2s^2 = 2039.572/(71)2039.572 / (7 - 1)\newlineVariance s2s^2 = 2039.572/62039.572 / 6\newlineVariance s2s^2 = 339.929339.929
  5. Find sample standard deviation: Take the square root of the variance to find the sample standard deviation.\newlineSample standard deviation ss = 339.929\sqrt{339.929}\newlineSample standard deviation ss 18.440\approx 18.440

More problems from Find values of normal variables