Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Question 6
1 pts
A square pyramid has a volume of 
484cm^(3) and a height of 
12cm. Find the length.

11cm

40.3cm

121cm

Question 66\newline11 pts\newlineA square pyramid has a volume of 484 cm3 484 \mathrm{~cm}^{3} and a height of 12 cm 12 \mathrm{~cm} . Find the length.\newline11 cm 11 \mathrm{~cm} \newline40.3 cm 40.3 \mathrm{~cm} \newline121 cm 121 \mathrm{~cm}

Full solution

Q. Question 66\newline11 pts\newlineA square pyramid has a volume of 484 cm3 484 \mathrm{~cm}^{3} and a height of 12 cm 12 \mathrm{~cm} . Find the length.\newline11 cm 11 \mathrm{~cm} \newline40.3 cm 40.3 \mathrm{~cm} \newline121 cm 121 \mathrm{~cm}
  1. Identify Formula: Identify the formula for the volume of a square pyramid.\newlineVolume = (13)×base area×height(\frac{1}{3}) \times \text{base area} \times \text{height}\newlineHere, the base area is the area of the square base, which can be calculated as side length squared (s2)(s^2).\newlineSo, Volume = (13)×s2×height(\frac{1}{3}) \times s^2 \times \text{height}\newlineGiven: Volume = 484cm3484 \, \text{cm}^3, height = 12cm12 \, \text{cm}\newlineWe need to find the side length (s)(s).
  2. Substitute and Solve: Substitute the given values into the volume formula and solve for s2s^2. \newline484cm3=(13)s212cm484 \, \text{cm}^3 = \left(\frac{1}{3}\right) \cdot s^2 \cdot 12 \, \text{cm} \newlineTo isolate s2s^2, multiply both sides by 33 and divide by 1212. \newline(3484cm3)/12=s2\left(3 \cdot 484 \, \text{cm}^3\right) / 12 = s^2
  3. Calculate s2s^2: Calculate the value of s2s^2.
    s2=3×484 cm312s^2 = \frac{3 \times 484 \text{ cm}^3}{12}
    s2=1452 cm312s^2 = \frac{1452 \text{ cm}^3}{12}
    s2=121 cm2s^2 = 121 \text{ cm}^2
  4. Find Side Length: Find the side length ss by taking the square root of s2s^2.s=121cm2s = \sqrt{121} \, \text{cm}^2s=11cms = 11 \, \text{cm}

More problems from Volume of cubes and rectangular prisms: word problems