Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the identity.
(sec^(2)x-1)cos^(2)x=sin^(2)x

Prove the identity.\newline(sec2x1)cos2x=sin2x\left(\sec ^{2} x-1\right) \cos ^{2} x=\sin ^{2} x

Full solution

Q. Prove the identity.\newline(sec2x1)cos2x=sin2x\left(\sec ^{2} x-1\right) \cos ^{2} x=\sin ^{2} x
  1. Apply trigonometric identity: We start with the left-hand side of the equation (sec2x1)cos2x (\sec^{2}x-1)\cos^{2}x and apply the trigonometric identity sec2(x)=1+tan2(x) \sec^2(x) = 1 + \tan^2(x) .\newline(sec2x1)cos2x=(1+tan2(x)1)cos2(x) (\sec^{2}x-1)\cos^{2}x = (1 + \tan^2(x) - 1)\cos^2(x)
  2. Simplify expression: Simplify the expression by canceling out the 11 and 1-1.(1+tan2(x)1)cos2(x)=tan2(x)cos2(x)(1 + \tan^2(x) - 1)\cos^2(x) = \tan^2(x)\cos^2(x)
  3. Rewrite using identity: Use the trigonometric identity tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)} to rewrite tan2(x)\tan^2(x) as (sin2(x)cos2(x))\left(\frac{\sin^2(x)}{\cos^2(x)}\right).\newline\tan^\(2(x)\cos^22(x) = \left(\frac{\sin^22(x)}{\cos^22(x)}\right)\cos^22(x)
  4. Cancel out terms: Simplify the expression by canceling out the cos2(x)\cos^2(x) terms.sin2(x)cos2(x)cos2(x)=sin2(x)\frac{\sin^2(x)}{\cos^2(x)}\cos^2(x) = \sin^2(x)
  5. Prove identity: We have now shown that the left-hand side of the equation simplifies to sin2(x)\sin^2(x), which is the right-hand side of the original equation. Therefore, the identity is proven.\newlinesin2(x)=sin2(x)\sin^2(x) = \sin^2(x)

More problems from One-step inequalities: word problems