Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the identity.


cot 2x=(1-tan^(2)x)/(2tan x)

8585. Prove the identity.\newlinecot2x=1tan2x2tanx \cot 2 x=\frac{1-\tan ^{2} x}{2 \tan x}

Full solution

Q. 8585. Prove the identity.\newlinecot2x=1tan2x2tanx \cot 2 x=\frac{1-\tan ^{2} x}{2 \tan x}
  1. Express cot2x\cot 2x: We start by expressing cot2x\cot 2x in terms of sine and cosine functions using the identity cot(θ)=1tan(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\cos(\theta)}{\sin(\theta)}.\newlinecot2x=cos(2x)sin(2x)\cot 2x = \frac{\cos(2x)}{\sin(2x)}
  2. Use double angle formulas: Now we use the double angle formulas for sine and cosine to express cos(2x)\cos(2x) and sin(2x)\sin(2x) in terms of sin(x)\sin(x) and cos(x)\cos(x).cos(2x)=cos2(x)sin2(x)\cos(2x) = \cos^2(x) - \sin^2(x) and sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x)
  3. Substitute formulas into cot2x\cot 2x: Substitute the double angle formulas into the expression for cot2x\cot 2x.cot2x=cos2(x)sin2(x)2sin(x)cos(x)\cot 2x = \frac{\cos^2(x) - \sin^2(x)}{2\sin(x)\cos(x)}
  4. Express sin2(x)\sin^2(x) and cos2(x)\cos^2(x): We know that tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}, so we can express sin2(x)\sin^2(x) and cos2(x)\cos^2(x) in terms of tan(x)\tan(x).\newlinesin2(x)=tan2(x)cos2(x)\sin^2(x) = \tan^2(x) \cdot \cos^2(x) and cos2(x)=cos2(x)\cos^2(x) = \cos^2(x)
  5. Factor out cos2(x)\cos^2(x): Substitute sin2(x)\sin^2(x) and cos2(x)\cos^2(x) in terms of tan(x)\tan(x) into the expression for cot2x\cot 2x.\newlinecot2x=cos2(x)tan2(x)cos2(x)2tan(x)cos2(x)\cot 2x = \frac{\cos^2(x) - \tan^2(x) \cdot \cos^2(x)}{2\tan(x) \cdot \cos^2(x)}
  6. Cancel out cos2(x)\cos^2(x) terms: Factor out cos2(x)\cos^2(x) from the numerator.\newlinecot2x=cos2(x)(1tan2(x))2tan(x)cos2(x)\cot 2x = \frac{\cos^2(x) \cdot (1 - \tan^2(x))}{2\tan(x) \cdot \cos^2(x)}
  7. Arrive at desired identity: Cancel out the cos2(x)\cos^2(x) terms in the numerator and denominator.cot2x=1tan2(x)2tan(x)\cot 2x = \frac{1 - \tan^2(x)}{2\tan(x)}
  8. Arrive at desired identity: Cancel out the cos2(x)\cos^2(x) terms in the numerator and denominator.cot2x=1tan2(x)2tan(x)\cot 2x = \frac{1 - \tan^2(x)}{2\tan(x)}We have arrived at the identity we were asked to prove.cot2x=1tan2(x)2tan(x)\cot 2x = \frac{1 - \tan^2(x)}{2\tan(x)}

More problems from Composition of linear and quadratic functions: find a value