Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove that
(i) 
(1)/(3+sqrt7)+(1)/(sqrt7+sqrt5)+(1)/(sqrt5+sqrt3)+(1)/(sqrt3+1)=1

88. Prove that\newline(i) 13+7+17+5+15+3+13+1=1 \frac{1}{3+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+1}=1

Full solution

Q. 88. Prove that\newline(i) 13+7+17+5+15+3+13+1=1 \frac{1}{3+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+1}=1
  1. Rationalize Denominators: Rationalize the denominator of each fraction.\newlineRationalizing the denominator of the first fraction:\newline13+73737=37(3+7)(37) \frac{1}{3+\sqrt{7}} \cdot \frac{3-\sqrt{7}}{3-\sqrt{7}} = \frac{3-\sqrt{7}}{(3+\sqrt{7})(3-\sqrt{7})} \newlineRationalizing the denominator of the second fraction:\newline17+57575=75(7+5)(75) \frac{1}{\sqrt{7}+\sqrt{5}} \cdot \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}} = \frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})} \newlineRationalizing the denominator of the third fraction:\newline15+35353=53(5+3)(53) \frac{1}{\sqrt{5}+\sqrt{3}} \cdot \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} \newlineRationalizing the denominator of the fourth fraction:\newline13+13131=31(3+1)(31) \frac{1}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{\sqrt{3}-1}{(\sqrt{3}+1)(\sqrt{3}-1)}
  2. Simplify Denominators: Simplify the denominators using the difference of squares formula.\newlineSimplify the denominator of the first fraction:\newline3732(7)2=3797=372 \frac{3-\sqrt{7}}{3^2-(\sqrt{7})^2} = \frac{3-\sqrt{7}}{9-7} = \frac{3-\sqrt{7}}{2} \newlineSimplify the denominator of the second fraction:\newline75(7)2(5)2=7575=752 \frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7})^2-(\sqrt{5})^2} = \frac{\sqrt{7}-\sqrt{5}}{7-5} = \frac{\sqrt{7}-\sqrt{5}}{2} \newlineSimplify the denominator of the third fraction:\newline53(5)2(3)2=5353=532 \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5})^2-(\sqrt{3})^2} = \frac{\sqrt{5}-\sqrt{3}}{5-3} = \frac{\sqrt{5}-\sqrt{3}}{2} \newlineSimplify the denominator of the fourth fraction:\newline31(3)212=3131=312 \frac{\sqrt{3}-1}{(\sqrt{3})^2-1^2} = \frac{\sqrt{3}-1}{3-1} = \frac{\sqrt{3}-1}{2}
  3. Add Simplified Fractions: Add the simplified fractions together.\newline372+752+532+312 \frac{3-\sqrt{7}}{2} + \frac{\sqrt{7}-\sqrt{5}}{2} + \frac{\sqrt{5}-\sqrt{3}}{2} + \frac{\sqrt{3}-1}{2} \newlineSince all denominators are the same, we can combine the numerators:\newline(37)+(75)+(53)+(31)2 \frac{(3-\sqrt{7}) + (\sqrt{7}-\sqrt{5}) + (\sqrt{5}-\sqrt{3}) + (\sqrt{3}-1)}{2}
  4. Cancel Terms in Numerator: Simplify the numerator by canceling out the terms.\newline37+75+53+312 \frac{3 - \cancel{\sqrt{7}} + \cancel{\sqrt{7}} - \cancel{\sqrt{5}} + \cancel{\sqrt{5}} - \cancel{\sqrt{3}} + \cancel{\sqrt{3}} - 1}{2} \newlineThe terms with square roots cancel each other out, leaving us with:\newline312=22 \frac{3 - 1}{2} = \frac{2}{2}
  5. Final Fraction: Simplify the final fraction.\newline22=1 \frac{2}{2} = 1

More problems from Solve quadratic inequalities