Progress:Match the polynomial on the left with the simplified polynomial on the right.Quotation ID: 1{(4x2y−5xy2+2x2y2+2xy)+(2x2y+4xy+2xy2−2x2y2)−6x2y−3x2y2+2xy2−2y−6x2y2+4x2y−2xy2+2x−2y3xy18x3y2+9x2y3−12x3y3+6xy2{6x2y2+3x2y−7xy−2xy2+2y6x2y−3xy2+6xyClear
Q. Progress:Match the polynomial on the left with the simplified polynomial on the right.Quotation ID: 1{(4x2y−5xy2+2x2y2+2xy)+(2x2y+4xy+2xy2−2x2y2)−6x2y−3x2y2+2xy2−2y−6x2y2+4x2y−2xy2+2x−2y3xy18x3y2+9x2y3−12x3y3+6xy2{6x2y2+3x2y−7xy−2xy2+2y6x2y−3xy2+6xyClear
Combine Like Terms: First, let's simplify the polynomial expression on the left by combining like terms.We have:(4x2y−5xy2+2x2y2+2xy)+(2x2y+4xy+2xy2−2x2y2)−6x2y−3x2y2+2xy2−2yCombine like terms:(4x2y+2x2y−6x2y)+(−5xy2+2xy2+2xy2)+(2x2y2−2x2y2−3x2y2)+(2xy+4xy)−2yNow, simplify each group:(4x2y+2x2y−6x2y)=0(−5xy2+2xy2+2xy2)=−1xy2(2x2y2−2x2y2−3x2y2)=−3x2y2(2xy+4xy)=6xyAnd we have −2y as it is.So, the simplified polynomial is:0−1xy2−3x2y2+6xy−2yWhich simplifies further to:−xy2−3x2y2+6xy−2y