Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

P(x)=x^(4)-2x^(3)-3x^(2)+4
What is the remainder when 
P(x) is divided by 
(x-3) ?

P(x)=x42x33x2+4 P(x)=x^{4}-2 x^{3}-3 x^{2}+4 \newlineWhat is the remainder when P(x) P(x) is divided by (x3) (x-3) ?

Full solution

Q. P(x)=x42x33x2+4 P(x)=x^{4}-2 x^{3}-3 x^{2}+4 \newlineWhat is the remainder when P(x) P(x) is divided by (x3) (x-3) ?
  1. Problem and Remainder Theorem: Understand the problem and the remainder theorem.\newlineThe remainder theorem states that if a polynomial P(x)P(x) is divided by (xa)(x - a), the remainder is P(a)P(a).\newlineHere, we need to find the remainder when P(x)P(x) is divided by (x3)(x - 3), so we will calculate P(3)P(3).
  2. Substituting x=3x = 3: Substitute x=3x = 3 into the polynomial P(x)P(x).
    P(x)=x42x33x2+4P(x) = x^4 - 2x^3 - 3x^2 + 4
    P(3)=(3)42(3)33(3)2+4P(3) = (3)^4 - 2(3)^3 - 3(3)^2 + 4
  3. Calculating P(33): Calculate the value of P(33).\newlineP(33) = (3)42(3)33(3)2+4(3)^4 - 2(3)^3 - 3(3)^2 + 4\newlineP(33) = 812(27)3(9)+481 - 2(27) - 3(9) + 4\newlineP(33) = 815427+481 - 54 - 27 + 4
  4. Finding the Remainder: Finish the calculation to find the remainder.\newlineP(3)=815427+4P(3) = 81 - 54 - 27 + 4\newlineP(3)=2727+4P(3) = 27 - 27 + 4\newlineP(3)=0+4P(3) = 0 + 4\newlineP(3)=4P(3) = 4

More problems from Composition of linear and quadratic functions: find a value