Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. 
(sqrt7+4sqrt2)(2sqrt7-3sqrt2)

Multiply. (7+42)(2732) (\sqrt{7}+4 \sqrt{2})(2 \sqrt{7}-3 \sqrt{2})

Full solution

Q. Multiply. (7+42)(2732) (\sqrt{7}+4 \sqrt{2})(2 \sqrt{7}-3 \sqrt{2})
  1. Identify terms: Step 11: Identify the terms to distribute.\newlineWe have (7+42)(2732)(\sqrt{7} + 4\sqrt{2})(2\sqrt{7} - 3\sqrt{2}).\newlineDistribute each term in the first parenthesis to each term in the second parenthesis.
  2. Distribute 7\sqrt{7}: Step 22: Distribute 7\sqrt{7} to (2732)(2\sqrt{7} - 3\sqrt{2}).\newline7×27=2×7=14\sqrt{7} \times 2\sqrt{7} = 2 \times 7 = 14,\newline7×(32)=314\sqrt{7} \times (-3\sqrt{2}) = -3\sqrt{14}.
  3. Distribute 424\sqrt{2}: Step 33: Distribute 424\sqrt{2} to (2732)(2\sqrt{7} - 3\sqrt{2}).42×27=8144\sqrt{2} \times 2\sqrt{7} = 8\sqrt{14},42×(32)=12×2=244\sqrt{2} \times (-3\sqrt{2}) = -12 \times 2 = -24.
  4. Combine terms: Step 44: Combine all terms. 14314+8142414 - 3\sqrt{14} + 8\sqrt{14} - 24. Combine like terms: 14+(814314)24=14+5142414 + (8\sqrt{14} - 3\sqrt{14}) - 24 = 14 + 5\sqrt{14} - 24.
  5. Simplify expression: Step 55: Simplify the final expression. \newline1424=1014 - 24 = -10,\newlineSo, 10+514-10 + 5\sqrt{14}.

More problems from Add, subtract, multiply, and divide polynomials