Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lus/x9e81a4f98389efdf:limits-and-continuity/x9e81a4f98389efdf:removing-discontinuities/e/continuity?classCode=ED3AZEZWI
A schematic reacti...
Google Drive
Dashboard
North Wake Hall P...
Blackboard Learn
khan academy AP
Khan Academy
Get Al Tutoring
NEW
주
Donate [ד
jtolentino-1
Removable discontinuities
Google Classroom
Let 
f(x)=(x+1)/(xe^(x)+e^(x)) when 
x!=-1.

f is continuous for all real numbers.
Find 
f(-1).
Choose 1 answer:
(A) 1
(B) 
e
(c) 2
Start over 2 of 4

Let f(x)=x+1xex+ex f(x)=\frac{x+1}{xe^{x}+e^{x}} when x1 x\neq-1 .\newlinef f is continuous for all real numbers.\newlineFind f(1) f(-1) .\newlineChoose 11 answer:\newline(A) 1 1 \newline(B) e e \newline(C) 2 2

Full solution

Q. Let f(x)=x+1xex+ex f(x)=\frac{x+1}{xe^{x}+e^{x}} when x1 x\neq-1 .\newlinef f is continuous for all real numbers.\newlineFind f(1) f(-1) .\newlineChoose 11 answer:\newline(A) 1 1 \newline(B) e e \newline(C) 2 2
  1. Check Function Continuity: To find the value of f(1)f(-1), we need to determine if the function f(x)f(x) has a removable discontinuity at x=1x = -1. If it does, we can find the limit of f(x)f(x) as xx approaches 1-1 to find f(1)f(-1).
  2. Plug in x=1x = -1: First, let's plug in x=1x = -1 into the function to see if it is defined at that point.\newlinef(1)=(1+1)/((1)e1+e1)f(-1) = (-1 + 1) / ((-1)e^{-1} + e^{-1})\newlinef(1)=0/((1)/e+1/e)f(-1) = 0 / ((-1)/e + 1/e)\newlinef(1)=0/((1+1)/e)f(-1) = 0 / ((-1 + 1)/e)\newlinef(1)=0/0f(-1) = 0 / 0\newlineThis is an indeterminate form, which means the function is not defined at x=1x = -1, and there is a discontinuity at that point.
  3. Apply L'Hôpital's Rule: Since f(x)f(x) is continuous for all real numbers and there is a discontinuity at x=1x = -1, it must be a removable discontinuity. To find the value of f(1)f(-1), we need to calculate the limit of f(x)f(x) as xx approaches 1-1.
  4. Calculate Limit: We can use L'Hôpital's Rule to evaluate the limit since we have an indeterminate form of 0/00/0. We will differentiate the numerator and the denominator separately.\newlineThe derivative of the numerator with respect to xx is:\newlineddx(x+1)=1\frac{d}{dx} (x + 1) = 1\newlineThe derivative of the denominator with respect to xx is:\newlineddx(xex+ex)=ex+xex+ex=2ex+xex\frac{d}{dx} (xe^{x} + e^{x}) = e^{x} + xe^{x} + e^{x} = 2e^{x} + xe^{x}
  5. Final Value of f(1)f(-1): Now we apply L'Hôpital's Rule by taking the limit of the derivatives as xx approaches 1-1:
    limx11ex+xex+ex\lim_{x \to -1} \frac{1}{e^{x} + xe^{x} + e^{x}}
    Plugging in x=1x = -1, we get:
    lim=1e1+(1)e1+e1\lim = \frac{1}{e^{-1} + (-1)e^{-1} + e^{-1}}
    lim=1(1e)(1e)+(1e)\lim = \frac{1}{(\frac{1}{e}) - (\frac{1}{e}) + (\frac{1}{e})}
    lim=11e\lim = \frac{1}{\frac{1}{e}}
    lim=e\lim = e
  6. Final Value of f(1)f(-1): Now we apply L'Hôpital's Rule by taking the limit of the derivatives as xx approaches 1-1:
    limx11ex+xex+ex\lim_{x \to -1} \frac{1}{e^{x} + xe^{x} + e^{x}}
    Plugging in x=1x = -1, we get:
    lim=1e1+(1)e1+e1\lim = \frac{1}{e^{-1} + (-1)e^{-1} + e^{-1}}
    lim=1(1e)(1e)+(1e)\lim = \frac{1}{(\frac{1}{e}) - (\frac{1}{e}) + (\frac{1}{e})}
    lim=11e\lim = \frac{1}{\frac{1}{e}}
    lim=e\lim = eTherefore, the value of f(1)f(-1) is xx00, which means the correct answer is (B) xx00.

More problems from Volume of cubes and rectangular prisms: word problems