Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

log_(3)x-4log_(x)3=1+(1)/(log_(9)3)

log3x4logx3=1+1log93 \log _{3} x-4 \log _{x} 3=1+\frac{1}{\log _{9} 3}

Full solution

Q. log3x4logx3=1+1log93 \log _{3} x-4 \log _{x} 3=1+\frac{1}{\log _{9} 3}
  1. Understand given logarithmic equation: Understand the given logarithmic equation.\newlineWe have the equation log3x4logx3=1+1log93\log_{3}x - 4\log_{x}3 = 1 + \frac{1}{\log_{9}3}. We need to solve for xx.
  2. Use change of base formula: Use the change of base formula to rewrite 4logx34\log_{x}3. Change of base formula: logab=log(c)blog(c)a\log_{a}b = \frac{\log(c)b}{\log(c)a} 4logx3=4×(log(3)log(x))4\log_{x}3 = 4 \times \left(\frac{\log(3)}{\log(x)}\right)
  3. Simplify right side: Simplify the right side of the equation.\newlineWe have (1)/(log93)(1)/(\log_{9}3). Using the change of base formula again, we get:\newline(1)/(log93)=log(3)/log(9)(1)/(\log_{9}3) = \log(3) / \log(9)\newlineSince 99 is 323^2, log(9)=log(32)=2log(3)\log(9) = \log(3^2) = 2\log(3), so:\newline(1)/(log93)=log(3)/(2log(3))=1/2(1)/(\log_{9}3) = \log(3) / (2\log(3)) = 1/2
  4. Substitute simplified expressions: Substitute the simplified expressions back into the equation.\newlineNow we have log3x4×(log(3)log(x))=1+12\log_{3}x - 4 \times \left(\frac{\log(3)}{\log(x)}\right) = 1 + \frac{1}{2}
  5. Combine constants on right side: Combine the constants on the right side of the equation.\newline1+12=321 + \frac{1}{2} = \frac{3}{2}\newlineSo, the equation becomes log3x4(log(3)log(x))=32\log_{3}x - 4 \cdot \left(\frac{\log(3)}{\log(x)}\right) = \frac{3}{2}
  6. Convert to natural logarithm: Convert log3x\log_{3}x to the natural logarithm using the change of base formula.\newlinelog3x=log(x)log(3)\log_{3}x = \frac{\log(x)}{\log(3)}\newlineThe equation now is (log(x)log(3))4(log(3)log(x))=32\left(\frac{\log(x)}{\log(3)}\right) - 4 \cdot \left(\frac{\log(3)}{\log(x)}\right) = \frac{3}{2}
  7. Multiply through to clear denominators: Multiply through by log(3)log(x)\log(3)\log(x) to clear the denominators.$log(x)log(x)\$\log(x) \cdot \log(x) - 44 \cdot (\log(33) \cdot \log(33)) = \left(\frac{33}{22}\right) \cdot \log(33) \cdot \log(x)\)
  8. Simplify the equation: Simplify the equation.\newline(log(x))24(log(3))2=32log(3)log(x)(\log(x))^2 - 4 \cdot (\log(3))^2 = \frac{3}{2} \cdot \log(3) \cdot \log(x)
  9. Rearrange into quadratic form: Rearrange the equation into a quadratic form.\newlineLet's set A=log(x)A = \log(x) and B=log(3)B = \log(3), then we have:\newlineA232BA4B2=0A^2 - \frac{3}{2} \cdot B \cdot A - 4 \cdot B^2 = 0
  10. Solve quadratic equation for A: Solve the quadratic equation for A.\newlineThis is a quadratic equation in the form of A2CAD=0A^2 - C \cdot A - D = 0, where C=(32)BC = \left(\frac{3}{2}\right) \cdot B and D=4B2D = 4 \cdot B^2.\newlineWe can use the quadratic formula to solve for A: A=C±C2+4D2A = \frac{C \pm \sqrt{C^2 + 4D}}{2}
  11. Calculate discriminant: Calculate the discriminant of the quadratic equation.\newlineThe discriminant is C2+4D=(32B)2+44B2C^2 + 4D = \left(\frac{3}{2} \cdot B\right)^2 + 4 \cdot 4 \cdot B^2
  12. Substitute BB into discriminant: Substitute B=log(3)B = \log(3) into the discriminant.\newlineDiscriminant = (32log(3))2+44(log(3))2\left(\frac{3}{2} \cdot \log(3)\right)^2 + 4 \cdot 4 \cdot (\log(3))^2
  13. Simplify the discriminant: Simplify the discriminant.\newlineDiscriminant = (94)(log(3))2+16(log(3))2(\frac{9}{4}) \cdot (\log(3))^2 + 16 \cdot (\log(3))^2\newlineDiscriminant = (94+16)(log(3))2(\frac{9}{4} + 16) \cdot (\log(3))^2\newlineDiscriminant = (94+644)(log(3))2(\frac{9}{4} + \frac{64}{4}) \cdot (\log(3))^2\newlineDiscriminant = (\frac{\(73\)}{\(4\)}) \cdot (\log(\(3))^22
  14. Solve for A using quadratic formula: Solve for A using the quadratic formula.\newlineA=(32)B±(734)B22A = \frac{\left(\frac{3}{2}\right) * B \pm \sqrt{\left(\frac{73}{4}\right) * B^2}}{2}\newlineA=(32)log(3)±(734)(log(3))22A = \frac{\left(\frac{3}{2}\right) * \log(3) \pm \sqrt{\left(\frac{73}{4}\right) * (\log(3))^2}}{2}
  15. Solve for x: Since A=log(x)A = \log(x), we can solve for x.x=10Ax = 10^Ax=10(32log(3)±734(log(3))2)/2x = 10^{\left(\frac{3}{2} \cdot \log(3) \pm \sqrt{\frac{73}{4} \cdot (\log(3))^2}\right) / 2}
  16. Realize mistake in previous step: Realize there is a mistake in the previous step.\newlineThe base of the logarithm is 33, not 1010. Therefore, we should use 33 as the base for exponentiation, not 1010.\newlinex=3Ax = 3^A\newlinex=3(32log(3)±734(log(3))2)/2x = 3^{\left(\frac{3}{2} \cdot \log(3) \pm \sqrt{\frac{73}{4} \cdot (\log(3))^2}\right) / 2}

More problems from Quotient property of logarithms