Convert to Base 3: Convert the base of the second logarithm from base 9 to base 3 using the change of base formula: logb(a)=logc(b)logc(a).Calculation: log9(sinx)=log3(9)log3(sinx)Since log3(9)=2, it simplifies to log9(sinx)=21∗log3(sinx).
Substitute Converted Logarithm: Substitute the converted logarithm back into the original equation.Calculation: log3(−cosx)−21⋅log3(sinx)+41=−log9(2)
Convert to Base 3: Convert −log9(2) to base 3 using the same change of base formula.Calculation: −log9(2)=−log3(9)log3(2)Since log3(9)=2, it simplifies to −log9(2)=−(21)⋅log3(2).
Combine Terms in Base 3: Combine all terms in base 3.Calculation: log3(−cosx)−21⋅log3(sinx)+41=−21⋅log3(2)
Isolate Logarithm: Attempt to isolate log3(−cosx).Calculation: log3(−cosx)=21⋅log3(sinx)−41+21⋅log3(2)
More problems from Quotient property of logarithms