Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

log_(2)(5)+log_(2)(2)=??

log2(5)+log2(2)=?? \log _{2}(5)+\log _{2}(2)=? ?

Full solution

Q. log2(5)+log2(2)=?? \log _{2}(5)+\log _{2}(2)=? ?
  1. Apply product rule of logarithms: Apply the product rule of logarithms to combine log2(5)\log_2(5) and log2(2)\log_2(2). The product rule of logarithms states that loga(b)+loga(c)=loga(bc)\log_a(b) + \log_a(c) = \log_a(b*c). Therefore, log2(5)+log2(2)=log2(52)\log_2(5) + \log_2(2) = \log_2(5*2).
  2. Calculate product inside logarithm: Calculate the product inside the logarithm.\newlineThe product of 55 and 22 is 1010.\newlineSo, log2(5)+log2(2)=log2(10)\log_2(5) + \log_2(2) = \log_2(10).
  3. Evaluate log2(10)\log_2(10): Evaluate log2(10)\log_2(10) if possible.\newlineSince 1010 is not a power of 22, we cannot simplify log2(10)\log_2(10) to an integer.\newlineTherefore, the final answer is log2(10)\log_2(10).

More problems from Quotient property of logarithms