Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
lim
x
→
0
(
sin
3
x
sin
2
x
)
=
□
\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square
x
→
0
lim
(
sin
2
x
sin
3
x
)
=
□
View step-by-step help
Home
Math Problems
Calculus
Find limits involving trigonometric functions
Full solution
Q.
lim
x
→
0
(
sin
3
x
sin
2
x
)
=
□
\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square
x
→
0
lim
(
sin
2
x
sin
3
x
)
=
□
Identify Limit:
Identify the limit to be evaluated.
\newline
We need to find the limit of the function
sin
3
x
sin
2
x
\frac{\sin 3x}{\sin 2x}
s
i
n
2
x
s
i
n
3
x
as
x
x
x
approaches
0
0
0
.
Apply Limit:
Apply the limit to the function.
\newline
lim
x
→
0
sin
3
x
sin
2
x
\lim_{x \rightarrow 0}\frac{\sin 3x}{\sin 2x}
lim
x
→
0
s
i
n
2
x
s
i
n
3
x
\newline
We will use the fact that
lim
x
→
0
sin
x
x
=
1
\lim_{x \rightarrow 0}\frac{\sin x}{x} = 1
lim
x
→
0
x
s
i
n
x
=
1
, which is a well-known trigonometric limit.
Rewrite Function:
Rewrite the function to use the known limit.
\newline
We can rewrite the function as
(
3
2
)
⋅
(
sin
3
x
3
x
)
⋅
(
2
x
sin
2
x
)
(\frac{3}{2}) \cdot (\frac{\sin 3x}{3x}) \cdot (\frac{2x}{\sin 2x})
(
2
3
)
⋅
(
3
x
s
i
n
3
x
)
⋅
(
s
i
n
2
x
2
x
)
.
Apply Known Limit:
Apply the limit to each part of the function.
\newline
lim
x
→
0
(
3
2
)
⋅
sin
3
x
3
x
⋅
2
x
sin
2
x
=
(
3
2
)
⋅
lim
x
→
0
sin
3
x
3
x
⋅
lim
x
→
0
2
x
sin
2
x
\lim_{x \to 0}\left(\frac{3}{2}\right) \cdot \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} = \left(\frac{3}{2}\right) \cdot \lim_{x \to 0}\frac{\sin 3x}{3x} \cdot \lim_{x \to 0}\frac{2x}{\sin 2x}
lim
x
→
0
(
2
3
)
⋅
3
x
s
i
n
3
x
⋅
s
i
n
2
x
2
x
=
(
2
3
)
⋅
lim
x
→
0
3
x
s
i
n
3
x
⋅
lim
x
→
0
s
i
n
2
x
2
x
Evaluate Limits:
Evaluate each limit separately.
\newline
lim
x
→
0
sin
3
x
3
x
=
1
\lim_{x \rightarrow 0}\frac{\sin 3x}{3x} = 1
lim
x
→
0
3
x
s
i
n
3
x
=
1
and
lim
x
→
0
2
x
sin
2
x
=
1
\lim_{x \rightarrow 0}\frac{2x}{\sin 2x} = 1
lim
x
→
0
s
i
n
2
x
2
x
=
1
, using the known trigonometric limit.
Multiply Results:
Multiply the results of the limits.
\newline
(
3
2
)
×
1
×
1
=
3
2
(\frac{3}{2}) \times 1 \times 1 = \frac{3}{2}
(
2
3
)
×
1
×
1
=
2
3
Conclude Answer:
Conclude the final answer.
\newline
The limit of
sin
3
x
sin
2
x
\frac{\sin 3x}{\sin 2x}
s
i
n
2
x
s
i
n
3
x
as
x
x
x
approaches
0
0
0
is
3
2
\frac{3}{2}
2
3
.
More problems from Find limits involving trigonometric functions
Question
Find
lim
x
→
∞
x
+
1
x
2
+
1
\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+1}
lim
x
→
∞
x
2
+
1
x
+
1
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
0
0
0
\newline
(D) The limit is unbounded
Get tutor help
Posted 11 months ago
Question
Solve the differential equation.
\newline
d
y
d
x
=
e
2
x
−
2
y
\frac{dy}{dx}=e^{2x-2y}
d
x
d
y
=
e
2
x
−
2
y
Get tutor help
Posted 10 months ago
Question
Find the derivative of each function using the limit definition.
\newline
a.
\newline
f
(
x
)
=
x
2
+
3
x
−
5
f(x)=x^{2}+3x-5
f
(
x
)
=
x
2
+
3
x
−
5
Get tutor help
Posted 10 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
2
+
4
x
+
1
+
4
2+4 x+1+4
2
+
4
x
+
1
+
4
\newline
You must answer all questions above in order to submit.
Get tutor help
Posted 11 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
1
−
x
+
x
+
2
x
+
3
1-x+x+2 x+3
1
−
x
+
x
+
2
x
+
3
\newline
You must answer all questions above in order to submit.
Get tutor help
Posted 11 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
9
y
−
2
=
25
9 y-2=25
9
y
−
2
=
25
\newline
2
2
2
\newline
3
3
3
\newline
5
5
5
\newline
9
9
9
Get tutor help
Posted 10 months ago
Question
What value of
z
z
z
makes the equation below true?
\newline
10
z
+
5
=
75
10 z+5=75
10
z
+
5
=
75
\newline
7
7
7
\newline
10
10
10
\newline
11
11
11
\newline
15
15
15
Get tutor help
Posted 10 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
2
y
+
5
=
21
2 y+5=21
2
y
+
5
=
21
\newline
5
5
5
\newline
8
8
8
\newline
14
14
14
\newline
16
16
16
Get tutor help
Posted 10 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
4
y
−
5
=
23
4 y-5=23
4
y
−
5
=
23
\newline
6
6
6
\newline
7
7
7
\newline
14
14
14
\newline
23
23
23
Get tutor help
Posted 10 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
6
y
−
1
=
17
6 y-1=17
6
y
−
1
=
17
\newline
3
3
3
\newline
6
6
6
\newline
15
15
15
\newline
16
16
16
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant