Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
lim
x
→
0
(
sin
3
x
sin
2
x
)
=
□
\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square
x
→
0
lim
(
sin
2
x
sin
3
x
)
=
□
View step-by-step help
Home
Math Problems
Calculus
Find limits involving trigonometric functions
Full solution
Q.
lim
x
→
0
(
sin
3
x
sin
2
x
)
=
□
\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square
x
→
0
lim
(
sin
2
x
sin
3
x
)
=
□
Identify Limit:
Identify the limit to be evaluated.
\newline
We need to find the limit of the function
sin
3
x
sin
2
x
\frac{\sin 3x}{\sin 2x}
s
i
n
2
x
s
i
n
3
x
as
x
x
x
approaches
0
0
0
.
Apply Limit:
Apply the limit to the function.
\newline
lim
x
→
0
sin
3
x
sin
2
x
\lim_{x \rightarrow 0}\frac{\sin 3x}{\sin 2x}
lim
x
→
0
s
i
n
2
x
s
i
n
3
x
\newline
We will use the fact that
lim
x
→
0
sin
x
x
=
1
\lim_{x \rightarrow 0}\frac{\sin x}{x} = 1
lim
x
→
0
x
s
i
n
x
=
1
, which is a well-known trigonometric limit.
Rewrite Function:
Rewrite the function to use the known limit.
\newline
We can rewrite the function as
(
3
2
)
⋅
(
sin
3
x
3
x
)
⋅
(
2
x
sin
2
x
)
(\frac{3}{2}) \cdot (\frac{\sin 3x}{3x}) \cdot (\frac{2x}{\sin 2x})
(
2
3
)
⋅
(
3
x
s
i
n
3
x
)
⋅
(
s
i
n
2
x
2
x
)
.
Apply Known Limit:
Apply the limit to each part of the function.
\newline
lim
x
→
0
(
3
2
)
⋅
sin
3
x
3
x
⋅
2
x
sin
2
x
=
(
3
2
)
⋅
lim
x
→
0
sin
3
x
3
x
⋅
lim
x
→
0
2
x
sin
2
x
\lim_{x \to 0}\left(\frac{3}{2}\right) \cdot \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} = \left(\frac{3}{2}\right) \cdot \lim_{x \to 0}\frac{\sin 3x}{3x} \cdot \lim_{x \to 0}\frac{2x}{\sin 2x}
lim
x
→
0
(
2
3
)
⋅
3
x
s
i
n
3
x
⋅
s
i
n
2
x
2
x
=
(
2
3
)
⋅
lim
x
→
0
3
x
s
i
n
3
x
⋅
lim
x
→
0
s
i
n
2
x
2
x
Evaluate Limits:
Evaluate each limit separately.
\newline
lim
x
→
0
sin
3
x
3
x
=
1
\lim_{x \rightarrow 0}\frac{\sin 3x}{3x} = 1
lim
x
→
0
3
x
s
i
n
3
x
=
1
and
lim
x
→
0
2
x
sin
2
x
=
1
\lim_{x \rightarrow 0}\frac{2x}{\sin 2x} = 1
lim
x
→
0
s
i
n
2
x
2
x
=
1
, using the known trigonometric limit.
Multiply Results:
Multiply the results of the limits.
\newline
(
3
2
)
×
1
×
1
=
3
2
(\frac{3}{2}) \times 1 \times 1 = \frac{3}{2}
(
2
3
)
×
1
×
1
=
2
3
Conclude Answer:
Conclude the final answer.
\newline
The limit of
sin
3
x
sin
2
x
\frac{\sin 3x}{\sin 2x}
s
i
n
2
x
s
i
n
3
x
as
x
x
x
approaches
0
0
0
is
3
2
\frac{3}{2}
2
3
.
More problems from Find limits involving trigonometric functions
Question
Find
lim
x
→
∞
x
+
1
x
2
+
1
\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+1}
lim
x
→
∞
x
2
+
1
x
+
1
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
0
0
0
\newline
(D) The limit is unbounded
Get tutor help
Posted 9 months ago
Question
Solve the differential equation.
\newline
d
y
d
x
=
e
2
x
−
2
y
\frac{dy}{dx}=e^{2x-2y}
d
x
d
y
=
e
2
x
−
2
y
Get tutor help
Posted 8 months ago
Question
Find the derivative of each function using the limit definition.
\newline
a.
\newline
f
(
x
)
=
x
2
+
3
x
−
5
f(x)=x^{2}+3x-5
f
(
x
)
=
x
2
+
3
x
−
5
Get tutor help
Posted 8 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
2
+
4
x
+
1
+
4
2+4 x+1+4
2
+
4
x
+
1
+
4
\newline
You must answer all questions above in order to submit.
Get tutor help
Posted 9 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
1
−
x
+
x
+
2
x
+
3
1-x+x+2 x+3
1
−
x
+
x
+
2
x
+
3
\newline
You must answer all questions above in order to submit.
Get tutor help
Posted 9 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
9
y
−
2
=
25
9 y-2=25
9
y
−
2
=
25
\newline
2
2
2
\newline
3
3
3
\newline
5
5
5
\newline
9
9
9
Get tutor help
Posted 8 months ago
Question
What value of
z
z
z
makes the equation below true?
\newline
10
z
+
5
=
75
10 z+5=75
10
z
+
5
=
75
\newline
7
7
7
\newline
10
10
10
\newline
11
11
11
\newline
15
15
15
Get tutor help
Posted 8 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
2
y
+
5
=
21
2 y+5=21
2
y
+
5
=
21
\newline
5
5
5
\newline
8
8
8
\newline
14
14
14
\newline
16
16
16
Get tutor help
Posted 8 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
4
y
−
5
=
23
4 y-5=23
4
y
−
5
=
23
\newline
6
6
6
\newline
7
7
7
\newline
14
14
14
\newline
23
23
23
Get tutor help
Posted 8 months ago
Question
What value of
y
y
y
makes the equation below true?
\newline
6
y
−
1
=
17
6 y-1=17
6
y
−
1
=
17
\newline
3
3
3
\newline
6
6
6
\newline
15
15
15
\newline
16
16
16
Get tutor help
Posted 8 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant