Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

limx0(sin3xsin2x)=\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square

Full solution

Q. limx0(sin3xsin2x)=\lim_{x \to 0}\left(\frac{\sin 3x}{\sin 2x}\right)= \square
  1. Identify Limit: Identify the limit to be evaluated.\newlineWe need to find the limit of the function sin3xsin2x\frac{\sin 3x}{\sin 2x} as xx approaches 00.
  2. Apply Limit: Apply the limit to the function.\newlinelimx0sin3xsin2x\lim_{x \rightarrow 0}\frac{\sin 3x}{\sin 2x}\newlineWe will use the fact that limx0sinxx=1\lim_{x \rightarrow 0}\frac{\sin x}{x} = 1, which is a well-known trigonometric limit.
  3. Rewrite Function: Rewrite the function to use the known limit.\newlineWe can rewrite the function as (32)(sin3x3x)(2xsin2x)(\frac{3}{2}) \cdot (\frac{\sin 3x}{3x}) \cdot (\frac{2x}{\sin 2x}).
  4. Apply Known Limit: Apply the limit to each part of the function.\newlinelimx0(32)sin3x3x2xsin2x=(32)limx0sin3x3xlimx02xsin2x\lim_{x \to 0}\left(\frac{3}{2}\right) \cdot \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} = \left(\frac{3}{2}\right) \cdot \lim_{x \to 0}\frac{\sin 3x}{3x} \cdot \lim_{x \to 0}\frac{2x}{\sin 2x}
  5. Evaluate Limits: Evaluate each limit separately.\newlinelimx0sin3x3x=1\lim_{x \rightarrow 0}\frac{\sin 3x}{3x} = 1 and limx02xsin2x=1\lim_{x \rightarrow 0}\frac{2x}{\sin 2x} = 1, using the known trigonometric limit.
  6. Multiply Results: Multiply the results of the limits.\newline(32)×1×1=32(\frac{3}{2}) \times 1 \times 1 = \frac{3}{2}
  7. Conclude Answer: Conclude the final answer.\newlineThe limit of sin3xsin2x\frac{\sin 3x}{\sin 2x} as xx approaches 00 is 32\frac{3}{2}.

More problems from Find limits involving trigonometric functions