Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr-5)(x^(2)+5x)/(x^(2)+2x-15)

limx5x2+5xx2+2x15 \lim _{x \rightarrow-5} \frac{x^{2}+5 x}{x^{2}+2 x-15}

Full solution

Q. limx5x2+5xx2+2x15 \lim _{x \rightarrow-5} \frac{x^{2}+5 x}{x^{2}+2 x-15}
  1. Substitute and Simplify: First, let's try to directly substitute the value of xx into the function to see if the function is defined at that point.\newlinelimx5x2+5xx2+2x15=(5)2+5(5)(5)2+2(5)15\lim_{x \rightarrow -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \frac{(-5)^{2} + 5(-5)}{(-5)^{2} + 2(-5) - 15}
  2. Factor Denominator: Now, let's perform the substitution and simplify the expression. (5)2+5(5)(5)2+2(5)15=2525251015\frac{(-5)^2 + 5\cdot(-5)}{(-5)^2 + 2\cdot(-5) - 15} = \frac{25 - 25}{25 - 10 - 15}
  3. Rewrite with Factored Denominator: Simplify the numerator and the denominator.\newline(2525)/(251015)=0/(251015)(25 - 25) / (25 - 10 - 15) = 0 / (25 - 10 - 15)
  4. Factor Numerator: Further simplify the denominator.\newline0/(251015)=0/00 / (25 - 10 - 15) = 0 / 0\newlineWe have an indeterminate form 0/00/0, which means we need to use a different method to evaluate the limit.
  5. Cancel Common Factor: We will factor the numerator and the denominator to see if there are common factors that can be canceled out.\newlineThe numerator is already simplified, so we will factor the denominator.\newlinex2+2x15x^2 + 2x - 15 can be factored into (x+5)(x3)(x + 5)(x - 3).
  6. Substitute and Simplify: Now we rewrite the original limit with the factored denominator.\newlinelimx5x2+5xx2+2x15=limx5x2+5x(x+5)(x3)\lim_{x \rightarrow -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \lim_{x \rightarrow -5}\frac{x^{2}+5x}{(x + 5)(x - 3)}
  7. Substitute and Simplify: Now we rewrite the original limit with the factored denominator.\newlinelimx5x2+5xx2+2x15=limx5x2+5x(x+5)(x3)\lim_{x \rightarrow -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \lim_{x \rightarrow -5}\frac{x^{2}+5x}{(x + 5)(x - 3)}We notice that x2+5xx^2 + 5x can be factored as x(x+5)x(x + 5).\newlineSo, we rewrite the limit with the factored numerator.\newlinelimx5x2+5x(x+5)(x3)=limx5x(x+5)(x+5)(x3)\lim_{x \rightarrow -5}\frac{x^{2}+5x}{(x + 5)(x - 3)} = \lim_{x \rightarrow -5}\frac{x(x + 5)}{(x + 5)(x - 3)}
  8. Substitute and Simplify: Now we rewrite the original limit with the factored denominator.\newlinelimx5x2+5xx2+2x15=limx5x2+5x(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)}We notice that x2+5xx^2 + 5x can be factored as x(x+5)x(x + 5).\newlineSo, we rewrite the limit with the factored numerator.\newlinelimx5x2+5x(x+5)(x3)=limx5x(x+5)(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)}We can now cancel out the common factor (x+5)(x + 5) from the numerator and the denominator.\newlinelimx5x(x+5)(x+5)(x3)=limx5xx3\lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x}{x - 3}
  9. Substitute and Simplify: Now we rewrite the original limit with the factored denominator.\newlinelimx5x2+5xx2+2x15=limx5x2+5x(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)}We notice that x2+5xx^2 + 5x can be factored as x(x+5)x(x + 5).\newlineSo, we rewrite the limit with the factored numerator.\newlinelimx5x2+5x(x+5)(x3)=limx5x(x+5)(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)}We can now cancel out the common factor (x+5)(x + 5) from the numerator and the denominator.\newlinelimx5x(x+5)(x+5)(x3)=limx5xx3\lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x}{x - 3}Now that we have simplified the expression, we can directly substitute x=5x = -5 into the limit.\newlinelimx5xx3=5(5)3\lim_{x \to -5}\frac{x}{x - 3} = \frac{-5}{(-5) - 3}
  10. Substitute and Simplify: Now we rewrite the original limit with the factored denominator.\newlinelimx5x2+5xx2+2x15=limx5x2+5x(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{x^{2}+2x-15} = \lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)}We notice that x2+5xx^2 + 5x can be factored as x(x+5)x(x + 5).\newlineSo, we rewrite the limit with the factored numerator.\newlinelimx5x2+5x(x+5)(x3)=limx5x(x+5)(x+5)(x3)\lim_{x \to -5}\frac{x^{2}+5x}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)}We can now cancel out the common factor (x+5)(x + 5) from the numerator and the denominator.\newlinelimx5x(x+5)(x+5)(x3)=limx5xx3\lim_{x \to -5}\frac{x(x + 5)}{(x + 5)(x - 3)} = \lim_{x \to -5}\frac{x}{x - 3}Now that we have simplified the expression, we can directly substitute x=5x = -5 into the limit.\newlinelimx5xx3=5(5)3\lim_{x \to -5}\frac{x}{x - 3} = \frac{-5}{(-5) - 3}Finally, we perform the substitution and simplify the expression.\newline5(5)3=58=58\frac{-5}{(-5) - 3} = \frac{-5}{-8} = \frac{5}{8}

More problems from Find limits of polynomials and rational functions