Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
x
x
x
and
y
y
y
be functions of
t
t
t
with
y
=
x
3
+
2
x
+
1
y = x^3 + 2x + 1
y
=
x
3
+
2
x
+
1
. If
d
x
d
t
=
−
1
\frac{dx}{dt} = -1
d
t
d
x
=
−
1
, what is
d
y
d
t
\frac{dy}{dt}
d
t
d
y
when
x
=
4
x = 4
x
=
4
?
\newline
Write an exact, simplified answer.
View step-by-step help
Home
Math Problems
Precalculus
Complex conjugate theorem
Full solution
Q.
Let
x
x
x
and
y
y
y
be functions of
t
t
t
with
y
=
x
3
+
2
x
+
1
y = x^3 + 2x + 1
y
=
x
3
+
2
x
+
1
. If
d
x
d
t
=
−
1
\frac{dx}{dt} = -1
d
t
d
x
=
−
1
, what is
d
y
d
t
\frac{dy}{dt}
d
t
d
y
when
x
=
4
x = 4
x
=
4
?
\newline
Write an exact, simplified answer.
Apply Chain Rule:
To find
d
y
d
t
\frac{dy}{dt}
d
t
d
y
, use the
chain rule
on
y
=
x
3
+
2
x
+
1
y = x^3 + 2x + 1
y
=
x
3
+
2
x
+
1
. Differentiate
y
y
y
with respect to
x
x
x
to get
d
y
d
x
\frac{dy}{dx}
d
x
d
y
.
\newline
d
y
d
x
=
3
x
2
+
2
\frac{dy}{dx} = 3x^2 + 2
d
x
d
y
=
3
x
2
+
2
.
Substitute
x
=
4
x = 4
x
=
4
:
Substitute
x
=
4
x = 4
x
=
4
into
d
y
d
x
\frac{dy}{dx}
d
x
d
y
to find the value at
x
=
4
x = 4
x
=
4
.
d
y
d
x
=
3
(
4
)
2
+
2
=
3
×
16
+
2
=
48
+
2
=
50
\frac{dy}{dx} = 3(4)^2 + 2 = 3\times16 + 2 = 48 + 2 = 50
d
x
d
y
=
3
(
4
)
2
+
2
=
3
×
16
+
2
=
48
+
2
=
50
.
Use Chain Rule with
d
x
d
t
\frac{dx}{dt}
d
t
d
x
:
Now, use the given
d
x
d
t
=
−
1
\frac{dx}{dt} = -1
d
t
d
x
=
−
1
to find
d
y
d
t
\frac{dy}{dt}
d
t
d
y
using the chain rule:
d
y
d
t
=
d
y
d
x
⋅
d
x
d
t
\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}
d
t
d
y
=
d
x
d
y
⋅
d
t
d
x
.
d
y
d
t
=
50
⋅
(
−
1
)
=
−
50
\frac{dy}{dt} = 50 \cdot (-1) = -50
d
t
d
y
=
50
⋅
(
−
1
)
=
−
50
.
More problems from Complex conjugate theorem
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant