Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(x^(2)-49)/(x+7) when 
x!=-7.

h is continuous for all real numbers.
Find 
h(-7).
Choose 1 answer:
(A) -14
(B) 7
(C) 14
(D) -7

Let h(x)=x249x+7 h(x)=\frac{x^{2}-49}{x+7} when x7 x \neq-7 .\newlineh h is continuous for all real numbers.\newlineFind h(7) h(-7) .\newlineChoose 11 answer:\newline(A) 14-14\newline(B) 77\newline(C) 1414\newline(D) 7-7

Full solution

Q. Let h(x)=x249x+7 h(x)=\frac{x^{2}-49}{x+7} when x7 x \neq-7 .\newlineh h is continuous for all real numbers.\newlineFind h(7) h(-7) .\newlineChoose 11 answer:\newline(A) 14-14\newline(B) 77\newline(C) 1414\newline(D) 7-7
  1. Definition of h(x)h(x): The function h(x)h(x) is defined as h(x)=x249x+7h(x) = \frac{x^2 - 49}{x + 7} for x7x \neq -7. To find h(7)h(-7), we need to evaluate the limit of h(x)h(x) as xx approaches 7-7, since the function is continuous for all real numbers.
  2. Factoring the numerator: First, we factor the numerator of h(x)h(x): x249x^2 - 49 can be factored as (x+7)(x7)(x + 7)(x - 7).
  3. Rewriting h(x)h(x) using factored form: Now, we rewrite h(x)h(x) using the factored form: h(x)=(x+7)(x7)x+7h(x) = \frac{(x + 7)(x - 7)}{x + 7}.
  4. Canceling out common terms: We notice that (x+7)(x + 7) appears in both the numerator and the denominator. Since we are looking for the limit as xx approaches 7-7, and xx is not exactly 7-7, we can simplify the expression by canceling out the (x+7)(x + 7) terms.
  5. Simplified expression for h(x)h(x): After canceling, we get h(x)=x7h(x) = x - 7 for all x7x \neq -7.
  6. Substituting xx with 7-7: Now, we can find h(7)h(-7) by substituting xx with 7-7: h(7)=77h(-7) = -7 - 7.
  7. Calculating h(7)h(-7): Calculating the value, we get h(7)=14h(-7) = -14.

More problems from Conjugate root theorems