Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(x^(2)+1)/(2x^(2)-3x).

h^(')(x)=

Let h(x)=x2+12x23x h(x)=\frac{x^{2}+1}{2 x^{2}-3 x} .\newlineh(x)= h^{\prime}(x)=

Full solution

Q. Let h(x)=x2+12x23x h(x)=\frac{x^{2}+1}{2 x^{2}-3 x} .\newlineh(x)= h^{\prime}(x)=
  1. Apply Quotient Rule: To find the derivative of the function h(x)h(x), we will use the quotient rule, which states that the derivative of a function that is the quotient of two functions, u(x)v(x)\frac{u(x)}{v(x)}, is given by v(x)u(x)u(x)v(x)(v(x))2\frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=x2+1u(x) = x^2 + 1 and v(x)=2x23xv(x) = 2x^2 - 3x.
  2. Find u(x)u'(x): First, we need to find the derivative of u(x)u(x), which is u(x)u'(x). The derivative of x2x^2 is 2x2x, and the derivative of a constant is 00. Therefore, u(x)=2x+0=2xu'(x) = 2x + 0 = 2x.
  3. Find v(x)v'(x): Next, we need to find the derivative of v(x)v(x), which is v(x)v'(x). The derivative of 2x22x^2 is 4x4x, and the derivative of 3x-3x is 3-3. Therefore, v(x)=4x3v'(x) = 4x - 3.
  4. Simplify Numerator: Now we apply the quotient rule. We have: h(x)=((2x23x)(2x)(x2+1)(4x3))(2x23x)2h'(x) = \frac{( (2x^2 - 3x)(2x) - (x^2 + 1)(4x - 3) )}{(2x^2 - 3x)^2}.
  5. Subtract Terms: We simplify the numerator of the derivative:\newline(2x23x)(2x)=4x36x2(2x^2 - 3x)(2x) = 4x^3 - 6x^2,\newline(x2+1)(4x3)=4x33x2+4x3(x^2 + 1)(4x - 3) = 4x^3 - 3x^2 + 4x - 3.\newlineSo, h(x)=4x36x2(4x33x2+4x3)(2x23x)2h'(x) = \frac{4x^3 - 6x^2 - (4x^3 - 3x^2 + 4x - 3)}{(2x^2 - 3x)^2}.
  6. Final Derivative: Subtract the terms in the numerator:\newlineh(x)=4x36x24x3+3x24x+3(2x23x)2h'(x) = \frac{4x^3 - 6x^2 - 4x^3 + 3x^2 - 4x + 3}{(2x^2 - 3x)^2}\newline=3x2+3x24x+3(2x23x)2= \frac{-3x^2 + 3x^2 - 4x + 3}{(2x^2 - 3x)^2}\newline=4x+3(2x23x)2= \frac{-4x + 3}{(2x^2 - 3x)^2}.
  7. Final Derivative: Subtract the terms in the numerator:\newlineh(x)=4x36x24x3+3x24x+3(2x23x)2h'(x) = \frac{4x^3 - 6x^2 - 4x^3 + 3x^2 - 4x + 3}{(2x^2 - 3x)^2}\newline=3x2+3x24x+3(2x23x)2= \frac{-3x^2 + 3x^2 - 4x + 3}{(2x^2 - 3x)^2}\newline=4x+3(2x23x)2= \frac{-4x + 3}{(2x^2 - 3x)^2}.We have found the derivative of h(x)h(x) in its simplified form:\newlineh(x)=4x+3(2x23x)2h'(x) = \frac{-4x + 3}{(2x^2 - 3x)^2}.

More problems from Find the roots of factored polynomials