Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)={[(3x)/(xe^(x))," for "x!=0],[k," for "x=0]:}

h is continuous for all real numbers.
What is the value of 
k ?
Choose 1 answer:
(A) 1
(B) 3
(C) 0
(D) 
e

Let h(x)={3xxexamp; for x0kamp; for x=0 h(x)=\left\{\begin{array}{ll}\frac{3 x}{x e^{x}} & \text { for } x \neq 0 \\ k & \text { for } x=0\end{array}\right. \newlineh h is continuous for all real numbers.\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 11\newline(B) 33\newline(C) 00\newline(D) e e

Full solution

Q. Let h(x)={3xxex for x0k for x=0 h(x)=\left\{\begin{array}{ll}\frac{3 x}{x e^{x}} & \text { for } x \neq 0 \\ k & \text { for } x=0\end{array}\right. \newlineh h is continuous for all real numbers.\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 11\newline(B) 33\newline(C) 00\newline(D) e e
  1. Determine the value of kk: To determine the value of kk that makes h(x)h(x) continuous at x=0x = 0, we need to find the limit of h(x)h(x) as xx approaches 00 from the left and right and set it equal to h(0)h(0). The function is given by:\newlineh(x)={3xxexamp;for x0, kamp;for x=0h(x) = \begin{cases} \frac{3x}{xe^{x}} & \text{for } x \neq 0,\ k & \text{for } x = 0 \end{cases}\newlineFirst, we simplify the expression for x0x \neq 0:\newlineh(x)=3exh(x) = \frac{3}{e^{x}}\newlineNow, we find the limit as xx approaches 00:\newlinelimx0h(x)=limx0(3ex)\lim_{x \to 0} h(x) = \lim_{x \to 0} \left(\frac{3}{e^{x}}\right)\newlineSince kk11, the limit is:\newlinelimx0h(x)=31=3\lim_{x \to 0} h(x) = \frac{3}{1} = 3
  2. Simplify the expression: Since h(x)h(x) must be continuous at x=0x = 0, the value of h(0)h(0) must be equal to the limit we just found. Therefore, we set kk equal to the limit:\newlinek=limx0h(x)=3k = \lim_{x \to 0} h(x) = 3
  3. Find the limit as xx approaches 00: We have determined that for h(x)h(x) to be continuous at x=0x = 0, kk must be 33. This corresponds to answer choice (B).

More problems from Conjugate root theorems