Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(x^(2)-x-12)/(x-4) when 
x!=4.

g is continuous for all real numbers.
Find 
g(4).
Choose 1 answer:
(A) -4
(B) 7
(c) -3
(D) 4

Let g(x)=x2x12x4g(x)=\frac{x^{2}-x-12}{x-4} when x4x\neq 4. \newlinegg is continuous for all real numbers. \newlineFind g(4)g(4). \newlineChoose 11 answer: \newline(A) 4-4 \newline(B) 77 \newline(C) 3-3 \newline(D) 44

Full solution

Q. Let g(x)=x2x12x4g(x)=\frac{x^{2}-x-12}{x-4} when x4x\neq 4. \newlinegg is continuous for all real numbers. \newlineFind g(4)g(4). \newlineChoose 11 answer: \newline(A) 4-4 \newline(B) 77 \newline(C) 3-3 \newline(D) 44
  1. Factorize numerator: Simplify the expression for g(x)g(x) by factoring the numerator. The numerator x2x12x^2 - x - 12 can be factored as (x4)(x+3)(x - 4)(x + 3). So, g(x)=(x4)(x+3)(x4)g(x) = \frac{(x - 4)(x + 3)}{(x - 4)}.
  2. Cancel common factor: Cancel out the common factor (x4)(x - 4) from the numerator and the denominator. This gives g(x)=x+3g(x) = x + 3 for x4x \neq 4.
  3. Find g(4)g(4): To find g(4)g(4), substitute x=4x = 4 into the simplified expression g(x)=x+3g(x) = x + 3. So, g(4)=4+3=7g(4) = 4 + 3 = 7.

More problems from Conjugate root theorems