Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)={[(sqrt(x+20)-4)/(x+4)," for "x >= -20","x!=-4],[k," for "x=-4]:}

g is continuous for all 
x > -20.
What is the value of 
k ?
Choose 1 answer:
(A) 
(1)/(4)
(B) 
-(1)/(8)
(C) 
(1)/(8)
() 
-(1)/(4)

Let g(x)={x+204x+4amp; for x20,x4kamp; for x=4 g(x)=\left\{\begin{array}{ll}\frac{\sqrt{x+20}-4}{x+4} & \text { for } x \geq-20, x \neq-4 \\ k & \text { for } x=-4\end{array}\right. \newlineg g is continuous for all x>-20 .\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 14 \frac{1}{4} \newline(B) 18 -\frac{1}{8} \newline(C) 18 \frac{1}{8} \newline() 14 -\frac{1}{4}

Full solution

Q. Let g(x)={x+204x+4 for x20,x4k for x=4 g(x)=\left\{\begin{array}{ll}\frac{\sqrt{x+20}-4}{x+4} & \text { for } x \geq-20, x \neq-4 \\ k & \text { for } x=-4\end{array}\right. \newlineg g is continuous for all x>20 x>-20 .\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 14 \frac{1}{4} \newline(B) 18 -\frac{1}{8} \newline(C) 18 \frac{1}{8} \newline() 14 -\frac{1}{4}
  1. Step 11: Ensure Continuity: To ensure the function g(x)g(x) is continuous at x=4x = -4, the limit of g(x)g(x) as xx approaches 4-4 from the left must equal the value of g(x)g(x) at x=4x = -4. We need to find the limit of the first piece of the function as xx approaches 4-4.
  2. Step 22: Calculate the Limit: We calculate the limit of the first piece of g(x) as x approaches 4-4:\newlinelimx4x+204x+4 \lim_{{x \to -4}} \frac{\sqrt{x+20}-4}{x+4} \newlineTo evaluate this limit, we can rationalize the numerator by multiplying the numerator and denominator by the conjugate of the numerator.
  3. Step 33: Rationalize the Numerator: Multiplying by the conjugate, we get:\newlinelimx4x+204x+4x+20+4x+20+4 \lim_{{x \to -4}} \frac{\sqrt{x+20}-4}{x+4} \cdot \frac{\sqrt{x+20}+4}{\sqrt{x+20}+4} \newlineThis simplifies to:\newlinelimx4x+2016(x+4)(x+20+4) \lim_{{x \to -4}} \frac{x+20-16}{(x+4)(\sqrt{x+20}+4)}
  4. Step 44: Simplify the Expression: Further simplification gives us:\newlinelimx4x+4(x+4)(x+20+4) \lim_{{x \to -4}} \frac{x+4}{(x+4)(\sqrt{x+20}+4)} \newlineNow, we can cancel out the (x+44) term in the numerator and denominator, as long as x is not equal to 4-4, which is allowed since we are taking a limit as x approaches 4-4.
  5. Step 55: Cancel Out Terms: After canceling out the (x+44) term, we are left with:\newlinelimx41x+20+4 \lim_{{x \to -4}} \frac{1}{\sqrt{x+20}+4} \newlineNow we can directly substitute x = 4-4 into the expression since it is no longer undefined.
  6. Step 66: Substitute x = 4-4: Substituting x = 4-4 into the expression, we get:\newline14+20+4=116+4=14+4=18 \frac{1}{\sqrt{-4+20}+4} = \frac{1}{\sqrt{16}+4} = \frac{1}{4+4} = \frac{1}{8} \newlineSo, the limit of g(x) as x approaches 4-4 from the left is 18\frac{1}{8}.
  7. Step 77: Calculate the Limit: Since g(x) must be continuous at x = 4-4, the value of k must be equal to the limit we just found. Therefore, k = 18\frac{1}{8}.

More problems from Conjugate root theorems