Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(5x)/(5x^(4)-4).
Find 
lim_(x rarr oo)g(x).
Choose 1 answer:
(A) 
-(5)/(4)
(B) 1
(c) 0
(D) The limit is unbounded

Let g(x)=5x5x44 g(x)=\frac{5 x}{5 x^{4}-4} .\newlineFind limxg(x) \lim _{x \rightarrow \infty} g(x) .\newlineChoose 11 answer:\newline(A) 54 -\frac{5}{4} \newline(B) 11\newline(C) 00\newlineD The limit is unbounded

Full solution

Q. Let g(x)=5x5x44 g(x)=\frac{5 x}{5 x^{4}-4} .\newlineFind limxg(x) \lim _{x \rightarrow \infty} g(x) .\newlineChoose 11 answer:\newline(A) 54 -\frac{5}{4} \newline(B) 11\newline(C) 00\newlineD The limit is unbounded
  1. Divide by x4x^4: We have g(x)=5x5x44g(x) = \frac{5x}{5x^4 - 4}. To find the limit as xx approaches infinity, we can divide every term in the numerator and the denominator by x4x^4, the highest power of xx in the denominator.
  2. Simplify the expression: Dividing each term by x4x^4 gives us:\newlineg(x) = 5x/x45x4/x44/x4\frac{5x/x^4}{5x^4/x^4 - 4/x^4}\newlineSimplifying this, we get:\newlineg(x) = 5/x354/x4\frac{5/x^3}{5 - 4/x^4}
  3. Apply limit as xx approaches infinity: As xx approaches infinity, the terms with xx in the denominator approach zero. Therefore, 5x3\frac{5}{x^3} approaches 00 and 4x4\frac{4}{x^4} also approaches 00.
  4. Calculate the final limit: Taking the limit as xx approaches infinity, we get:\newlinelimxg(x)=050\lim_{x \to \infty} g(x) = \frac{0}{5 - 0}\newlineThis simplifies to:\newlinelimxg(x)=05\lim_{x \to \infty} g(x) = \frac{0}{5}
  5. Conclusion: Finally, we find that the limit of g(x)g(x) as xx approaches infinity is 00.limxg(x)=0\lim_{x \to \infty} g(x) = 0

More problems from Add, subtract, multiply, and divide polynomials