Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=x-2 and 
g(x)=x^(2)+x-1. Find each of the following and simplify.
a) 
(fg)(x)=
b) 
(fg)(-1)=
c) 
(fg)(2)=

Let f(x)=x2 f(x)=x-2 and g(x)=x2+x1 g(x)=x^{2}+x-1 . Find each of the following and simplify.\newlinea) (fg)(x)= (fg)(x)= \newlineb) (fg)(1)= (fg)(-1)= \newlinec) (fg)(2)= (fg)(2)=

Full solution

Q. Let f(x)=x2 f(x)=x-2 and g(x)=x2+x1 g(x)=x^{2}+x-1 . Find each of the following and simplify.\newlinea) (fg)(x)= (fg)(x)= \newlineb) (fg)(1)= (fg)(-1)= \newlinec) (fg)(2)= (fg)(2)=
  1. Find Product of Functions: Let's find the product of the functions f(x)f(x) and g(x)g(x), which is denoted as (fg)(x)(fg)(x).
    f(x)=x2f(x) = x - 2
    g(x)=x2+x1g(x) = x^2 + x - 1
    To find (fg)(x)(fg)(x), we multiply f(x)f(x) by g(x)g(x):
    (fg)(x)=f(x)g(x)(fg)(x) = f(x) \cdot g(x)
    (fg)(x)=(x2)(x2+x1)(fg)(x) = (x - 2) \cdot (x^2 + x - 1)
    Now, we distribute g(x)g(x)00 across the terms in the parentheses:
    g(x)g(x)11
    g(x)g(x)22
    Combine like terms:
    g(x)g(x)33
  2. Calculate (fg)(1)(fg)(-1): Now let's evaluate (fg)(1)(fg)(-1). Substitute 1-1 for xx in (fg)(x)=x3x23x+2(fg)(x) = x^3 - x^2 - 3x + 2. (fg)(1)=(1)3(1)23(1)+2(fg)(-1) = (-1)^3 - (-1)^2 - 3(-1) + 2 (fg)(1)=11+3+2(fg)(-1) = -1 - 1 + 3 + 2 (fg)(1)=3(fg)(-1) = 3
  3. Evaluate (fg)(2)(fg)(2): Finally, let's evaluate (fg)(2)(fg)(2). Substitute 22 for xx in (fg)(x)=x3x23x+2(fg)(x) = x^3 - x^2 - 3x + 2. (fg)(2)=(2)3(2)23(2)+2(fg)(2) = (2)^3 - (2)^2 - 3(2) + 2 (fg)(2)=846+2(fg)(2) = 8 - 4 - 6 + 2 (fg)(2)=0(fg)(2) = 0

More problems from Evaluate an exponential function