Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(-1)=3 and 
f^(')(-1)=5.
Let 
g be the function 
g(x)=(1)/(x).

Let 
F be a function defined as 
F(x)=f(x)*g(x).

F^(')(-1)=

- Let f f be a function such that f(1)=3 f(-1)=3 and f(1)=5 f^{\prime}(-1)=5 .\newline- Let g g be the function g(x)=1x g(x)=\frac{1}{x} .\newlineLet F F be a function defined as F(x)=f(x)g(x) F(x)=f(x) \cdot g(x) .\newlineF(1)= F^{\prime}(-1)=

Full solution

Q. - Let f f be a function such that f(1)=3 f(-1)=3 and f(1)=5 f^{\prime}(-1)=5 .\newline- Let g g be the function g(x)=1x g(x)=\frac{1}{x} .\newlineLet F F be a function defined as F(x)=f(x)g(x) F(x)=f(x) \cdot g(x) .\newlineF(1)= F^{\prime}(-1)=
  1. Use Product Rule: To find F(1)F'(-1), we need to use the product rule for differentiation, which states that if F(x)=f(x)g(x)F(x) = f(x) \cdot g(x), then F(x)=f(x)g(x)+f(x)g(x)F'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x). We are given that f(1)=3f(-1) = 3 and f(1)=5f'(-1) = 5. We also know that g(x)=1xg(x) = \frac{1}{x}, so we need to find g(1)g'(-1).
  2. Find g(1)g'(-1): First, let's find g(x)g'(x). The derivative of g(x)=1xg(x) = \frac{1}{x} is g(x)=1x2g'(x) = -\frac{1}{x^2}. Now we can find g(1)g'(-1) by substituting xx with 1-1.
  3. Calculate g(1)g'(-1): Calculate g(1)g'(-1): g(1)=1(1)2=11=1g'(-1) = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1.
  4. Apply Product Rule: Now we have all the necessary values to apply the product rule. We know f(1)=3f(-1) = 3, f(1)=5f'(-1) = 5, and g(1)=1g'(-1) = -1. Let's plug these values into the product rule formula.
  5. Substitute Values: Apply the product rule: F(1)=f(1)g(1)+f(1)g(1)F'(-1) = f'(-1) \cdot g(-1) + f(-1) \cdot g'(-1).
  6. Find g(1)g(-1): Substitute the known values: F(1)=5×g(1)+3×(1)F'(-1) = 5 \times g(-1) + 3 \times (-1).
  7. Complete Calculation: We need to find g(1)g(-1) which is g(x)g(x) evaluated at x=1x = -1. Since g(x)=1xg(x) = \frac{1}{x}, g(1)=1(1)=1g(-1) = \frac{1}{(-1)} = -1.
  8. Complete Calculation: We need to find g(1)g(-1) which is g(x)g(x) evaluated at x=1x = -1. Since g(x)=1xg(x) = \frac{1}{x}, g(1)=1(1)=1g(-1) = \frac{1}{(-1)} = -1.Now we can complete the calculation: F(1)=5×(1)+3×(1)=53=8F'(-1) = 5 \times (-1) + 3 \times (-1) = -5 - 3 = -8.

More problems from Evaluate an exponential function