Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
a,b > 0 satisfy 
a^(3)+b^(3)=a-b, then
(a) 
a^(2)+b^(2)=1
(b) 
a^(2)+ab+b^(2) < 1
(c) 
a^(2)+b^(2) > 1
(d) none of these

11. Let a, b>0 satisfy a3+b3=ab a^{3}+b^{3}=a-b , then\newline(a) a2+b2=1 a^{2}+b^{2}=1 \newline(b) a^{2}+a b+b^{2}<1 \newline(c) a^{2}+b^{2}>1 \newline(d) none of these

Full solution

Q. 11. Let a,b>0 a, b>0 satisfy a3+b3=ab a^{3}+b^{3}=a-b , then\newline(a) a2+b2=1 a^{2}+b^{2}=1 \newline(b) a2+ab+b2<1 a^{2}+a b+b^{2}<1 \newline(c) a2+b2>1 a^{2}+b^{2}>1 \newline(d) none of these
  1. Calculate using identity: Calculate a3+b3a^3 + b^3 using the identity a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2).\newline- Given: a3+b3=aba^3 + b^3 = a - b\newline- Identity: a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)\newline- Set equal: (a+b)(a2ab+b2)=ab(a + b)(a^2 - ab + b^2) = a - b
  2. Simplify the equation: Simplify the equation assuming a+b0a + b \neq 0 (since a, b > 00).\newline- Divide both sides by a+ba + b: a2ab+b2=aba+ba^2 - ab + b^2 = \frac{a - b}{a + b}
  3. Check option (a): Check each option by substituting and simplifying.\newline(a) a2+b2=1a^2 + b^2 = 1\newline- a2+b2=1a^2 + b^2 = 1 implies a2ab+b2=1aba^2 - ab + b^2 = 1 - ab\newline- Compare: 1ab=aba+b1 - ab = \frac{a - b}{a + b}\newline- This equation is not generally true without specific values for a and b.
  4. Check option (b): Check option (b).\newline(b) a^2 + ab + b^2 < 1\newline- a2+ab+b2=(a2ab+b2)+2aba^2 + ab + b^2 = (a^2 - ab + b^2) + 2ab\newline- Substitute: \frac{a - b}{a + b} + 2ab < 1\newline- This inequality depends on the values of a and b, not generally provable without additional information.
  5. Check option (c): Check option (c).\newline(c) a^2 + b^2 > 1\newline- a2+b2=(a2ab+b2)+aba^2 + b^2 = (a^2 - ab + b^2) + ab\newline- Substitute: \frac{a - b}{a + b} + ab > 1\newline- This inequality also depends on specific values of a and b, not generally provable.
  6. Conclude the results: Conclude that none of the options can be universally proven with the given information.\newline- None of the options (a)(a), (b)(b), or (c)(c) can be definitively proven true for all positive aa and bb satisfying the original equation.

More problems from Evaluate expression when a complex numbers and a variable term is given