Q. 1. Let a,b>0 satisfy a3+b3=a−b, then(a) a2+b2=1(b) a2+ab+b2<1(c) a2+b2>1(d) none of these
Calculate using identity: Calculate a3+b3 using the identity a3+b3=(a+b)(a2−ab+b2).- Given: a3+b3=a−b- Identity: a3+b3=(a+b)(a2−ab+b2)- Set equal: (a+b)(a2−ab+b2)=a−b
Simplify the equation: Simplify the equation assuming a+b=0 (since a, b > 0).- Divide both sides by a+b: a2−ab+b2=a+ba−b
Check option (a): Check each option by substituting and simplifying.(a) a2+b2=1- a2+b2=1 implies a2−ab+b2=1−ab- Compare: 1−ab=a+ba−b- This equation is not generally true without specific values for a and b.
Check option (b): Check option (b).(b) a^2 + ab + b^2 < 1- a2+ab+b2=(a2−ab+b2)+2ab- Substitute: \frac{a - b}{a + b} + 2ab < 1- This inequality depends on the values of a and b, not generally provable without additional information.
Check option (c): Check option (c).(c) a^2 + b^2 > 1- a2+b2=(a2−ab+b2)+ab- Substitute: \frac{a - b}{a + b} + ab > 1- This inequality also depends on specific values of a and b, not generally provable.
Conclude the results: Conclude that none of the options can be universally proven with the given information.- None of the options (a), (b), or (c) can be definitively proven true for all positive a and b satisfying the original equation.
More problems from Evaluate expression when a complex numbers and a variable term is given