Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.
3x-9x^(2)=-10
Choose 1 answer:
(A) x=(7+-sqrt77)/(2)
(B) x=(-2+-sqrt13)/(-3)
(C) x=(-5+-sqrt305)/(14)
(D) x=(-1+-sqrt41)/(-6)

Solve.\newline3x9x2=103 x-9 x^{2}=-10\newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(C) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}

Full solution

Q. Solve.\newline3x9x2=103 x-9 x^{2}=-10\newlineChoose 11 answer:\newline(A) x=7±772 x=\frac{7 \pm \sqrt{77}}{2} \newline(B) x=2±133 x=\frac{-2 \pm \sqrt{13}}{-3} \newline(C) x=5±30514 x=\frac{-5 \pm \sqrt{305}}{14} \newline(D) x=1±416 x=\frac{-1 \pm \sqrt{41}}{-6}
  1. Rewrite Equation: Rewrite the equation in standard quadratic form.\newlineTo solve the quadratic equation, we need to set it to zero by moving all terms to one side.\newline3x9x2=103x - 9x^2 = -10\newlineAdd 9x29x^2 and subtract 3x3x from both sides to get:\newline9x23x+10=09x^2 - 3x + 10 = 0
  2. Identify Coefficients: Identify the coefficients for the quadratic formula.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0.\newlineIn our equation, 9x23x+10=09x^2 - 3x + 10 = 0, a=9a = 9, b=3b = -3, and c=10c = 10.
  3. Substitute into Formula: Substitute the coefficients into the quadratic formula.\newlinex=(3)±(3)2491029x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 9 \cdot 10}}{2 \cdot 9}\newlinex=3±936018x = \frac{3 \pm \sqrt{9 - 360}}{18}\newlinex=3±35118x = \frac{3 \pm \sqrt{-351}}{18}
  4. Simplify Square Root: Simplify the expression under the square root. Since the expression under the square root is negative (351-351), we have no real solutions. The equation has complex solutions because the discriminant (b24acb^2 - 4ac) is less than zero.
  5. Write Complex Solutions: Write the complex solutions.\newlineThe complex solutions can be written as:\newlinex=3±35118x = \frac{3 \pm \sqrt{-351}}{18}\newlinex=3±i35118x = \frac{3 \pm i\sqrt{351}}{18}\newlineSince none of the answer choices are in the form of a complex number, we have made a mistake. We need to recheck our calculations.

More problems from Add and subtract polynomials