Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Is the function
v
(
x
)
=
−
x
6
+
4
x
2
−
1
v(x) = -x^6 + 4x^2 - 1
v
(
x
)
=
−
x
6
+
4
x
2
−
1
even, odd, or neither?
\newline
Choices:
\newline
(A)even
\newline
(B)odd
\newline
(C)neither
View step-by-step help
Home
Math Problems
Algebra 2
Even and odd functions
Full solution
Q.
Is the function
v
(
x
)
=
−
x
6
+
4
x
2
−
1
v(x) = -x^6 + 4x^2 - 1
v
(
x
)
=
−
x
6
+
4
x
2
−
1
even, odd, or neither?
\newline
Choices:
\newline
(A)even
\newline
(B)odd
\newline
(C)neither
Calculate
v
(
−
x
)
v(-x)
v
(
−
x
)
:
Calculate
v
(
−
x
)
v(-x)
v
(
−
x
)
by substituting
−
x
-x
−
x
for
x
x
x
in the function
v
(
x
)
v(x)
v
(
x
)
.
v
(
−
x
)
=
−
(
−
x
)
6
+
4
(
−
x
)
2
−
1
v(-x) = -(-x)^6 + 4(-x)^2 - 1
v
(
−
x
)
=
−
(
−
x
)
6
+
4
(
−
x
)
2
−
1
Simplify
v
(
−
x
)
v(-x)
v
(
−
x
)
:
Simplify the function
v
(
−
x
)
v(-x)
v
(
−
x
)
.
v
(
−
x
)
=
−
x
6
+
4
x
2
−
1
v(-x) = -x^6 + 4x^2 - 1
v
(
−
x
)
=
−
x
6
+
4
x
2
−
1
Compare
v
(
x
)
v(x)
v
(
x
)
and
v
(
−
x
)
v(-x)
v
(
−
x
)
:
Compare
v
(
x
)
v(x)
v
(
x
)
and
v
(
−
x
)
v(-x)
v
(
−
x
)
to determine if they are equal.
\newline
Since
v
(
x
)
=
−
x
6
+
4
x
2
−
1
v(x) = -x^6 + 4x^2 - 1
v
(
x
)
=
−
x
6
+
4
x
2
−
1
and
v
(
−
x
)
=
−
(
−
x
)
6
+
4
(
−
x
)
2
−
1
v(-x) = -(-x)^6 + 4(-x)^2 - 1
v
(
−
x
)
=
−
(
−
x
)
6
+
4
(
−
x
)
2
−
1
, we see that
v
(
x
)
=
v
(
−
x
)
v(x) = v(-x)
v
(
x
)
=
v
(
−
x
)
.
Conclude function type:
Conclude whether the function is even, odd, or neither.
\newline
Because
v
(
x
)
=
v
(
−
x
)
v(x) = v(-x)
v
(
x
)
=
v
(
−
x
)
, the function
v
(
x
)
v(x)
v
(
x
)
is even.
More problems from Even and odd functions
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 6 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 6 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 6 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 6 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 6 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 6 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 10 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 10 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 10 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant