Q. Is the function s(x)=−x4+8x3−9x2 even, odd, or neither?Choices:(A)even(B)odd(C)neither
Substitute −x in s(x):s(x)=−x4+8x3−9x2Find s(−x) by substituting −x for x in s(x).s(−x)=−(−x)4+8(−x)3−9(−x)2
Simplify s(−x):s(−x)=−(−x)4+8(−x)3−9(−x)2Simplify the right side of the function.s(−x)=−x4−8x3−9x2
Compare s(x) and s(−x): Compare s(x) and s(−x). We have s(x)=−x4+8x3−9x2 and s(−x)=−x4−8x3−9x2. Since s(−x)=s(x) and s(−x)=−s(x), s(x) is neither even nor odd.