Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?\newlinef(x)=4x+2f(x)=4x+2\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=4x+2f(x)=4x+2\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Definition of Even, Odd, Neither: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), then the function is even. If f(x)=f(x)f(-x) = -f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Calculate f(x)f(-x): First, we calculate f(x)f(-x) by substituting x-x for xx in the function f(x)=4x+2f(x)=4x+2.\newlinef(x)=4(x)+2=4x+2f(-x) = 4(-x) + 2 = -4x + 2
  3. Compare f(x)f(-x) with f(x)f(x): Now we compare f(x)f(-x) with f(x)f(x).
    f(x)=4x+2f(x) = 4x + 2
    f(x)=4x+2f(-x) = -4x + 2
    We can see that f(x)f(-x) is not equal to f(x)f(x) because f(x)f(-x) has a 4x-4x term while f(x)f(x) has a f(x)f(x)11 term. Therefore, the function is not even.
  4. Check if f(x)f(-x) is negative of f(x)f(x): Next, we check if f(x)f(-x) is the negative of f(x)f(x).
    f(x)=(4x+2)=4x2-f(x) = -(4x + 2) = -4x - 2
    f(x)=4x+2f(-x) = -4x + 2
    We can see that f(x)f(-x) is not equal to f(x)-f(x) because f(x)f(-x) has a +2+2 term while f(x)-f(x) has a f(x)f(x)11 term. Therefore, the function is not odd.

More problems from Even and odd functions