Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=(3)/(x^(2)+2)
Choose 1 answer:
(A) Even
(B) Odd
(C) Neither

Is the following function even, odd, or neither?\newlinef(x)=3x2+2f(x)=\frac{3}{x^{2}+2}\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=3x2+2f(x)=\frac{3}{x^{2}+2}\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Define function and f(x)f(-x): Define the function f(x)f(x) and determine f(x)f(-x). The given function is f(x)=3x2+2f(x)=\frac{3}{x^{2}+2}. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x). Substitute x-x for xx in f(x)=3x2+2f(x)=\frac{3}{x^{2}+2}. f(x)=3(x)2+2f(-x)=\frac{3}{(-x)^{2}+2}
  2. Simplify f(x)f(-x): Simplify f(x)f(-x). Simplify the right side of the function by noting that (x)2(-x)^2 is equal to x2x^2 because the square of a negative number is positive. f(x)=3x2+2f(-x)=\frac{3}{x^{2}+2}
  3. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x). We have: f(x)=3x2+2f(x)=\frac{3}{x^{2}+2} f(x)=3x2+2f(-x)=\frac{3}{x^{2}+2} Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions